follicle activation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 54)

H-INDEX

22
(FIVE YEARS 6)

2021 ◽  
Vol 176 ◽  
pp. 1-11
Author(s):  
Changquan Guo ◽  
Juan Dong ◽  
Yanfen Ma ◽  
Shuo Zhou ◽  
Weidong Zeng ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Paula Suarez-Henriques ◽  
Camila de Miranda e Silva Chaves ◽  
Ricardo Cardoso-Leite ◽  
Danielle G. Gomes-Caldas ◽  
Luciana Morita-Katiki ◽  
...  

Abstract Background The ewe lamb nutritional and physiological state interfere with the ovarian environment and fertility. The lack or excess of circulating nutrients reaching the ovary can change its gene expression. A protein deficiency in the blood caused by an Haemonchus contortus abomasal infection is detrimental to the organism’s development during puberty. The peripubertal period is a time of intensive growth that requires a high level of nutrients. An essential feature controlling pubertal arousal and female reproductive potential is ovarian follicle growth activation. Protein supplementation improves the sheep’s immune response to helminthic infections. We aimed to determine if supplementing protein in infected ewe lambs’ diet would impact the ovarian environment leading to earlier ovarian follicle activation than in infected not supplemented animals. Methods We fed 18 Santa Ines ewe lambs (Ovis aries) - bred by the same ram - with either 12% protein (Control groups) or 19% protein (Supplemented groups) in their diets. After 35 days of the diet, they were each artificially infected or not with 10,000 Haemonchus contortus L3 larvae. Following 77 days of the diet and 42 days of infection, we surgically collected their left ovaries and examined their genes expression through RNA sequencing. Results We found that protein supplementation in infected animals led to an up-regulation of genes (FDR p-values < 0.05) and biological processes (p-value cut-off = 0.01) linked to meiotic activation in pre-ovulatory follicles and primordial follicle activation, among others. The supplemented not infected animals also up-regulated genes and processes linked to meiosis and others, such as circadian behaviour. The not supplemented animals had these same processes down-regulated while up-regulated processes related to tissue morphogenesis, inflammation and immune response. Conclusion Diet’s protein supplementation of peripubertal infected animals allowed them to express genes related to a more mature ovarian follicle stage than their half-sisters that were not supplemented. These results could be modelling potential effects of the interaction between environmental factors, nutrition and infection on reproductive health. When ovarian activation is achieved in a timely fashion, the ewe may generate more lambs during its reproductive life, increasing sheep breeders’ productivity.


Author(s):  
Emmalee A Ford ◽  
Emily R Frost ◽  
Emma L Beckett ◽  
Shaun D Roman ◽  
Eileen A McLaughlin ◽  
...  

Abstract The dormant population of ovarian primordial follicles is determined at birth and serves as the reservoir for future female fertility. Yet our understanding of the molecular, biochemical, and cellular processes underpinning primordial follicle activation remains limited. The survival of primordial follicles relies on the correct complement and morphology of granulosa cells, which provide signalling factors essential for oocyte and follicular survival. To investigate the contribution of granulosa cells in the primordial-to-primary follicle transition, gene expression profiles of granulosa cells undergoing early differentiation were assessed in a murine model. Ovaries from C57Bl/6 mice were enzymatically dissociated at time-points spanning the initial wave of primordial follicle activation. Post-natal day (PND) 1 ovaries yielded primordial granulosa cells, and PND4 ovaries yielded a mixed population of primordial and primary granulosa cells. The comparative transcriptome of granulosa cells at these time-points was generated via Illumina NextSeq 500 system which identified 131 significantly differentially expressed transcripts. The differential expression of eight of the transcripts was confirmed by RT-qPCR Following biological network mapping via Ingenuity Pathway Analysis, the functional expression of the protein products of three of the differentially expressed genes, namely FRZB, POD1 and ZFX, was investigated with in-situ immunolocalisation in PND4 mouse ovaries was investigated. Finally, evidence was provided that Wnt pathway antagonist, secreted frizzled-related protein 3 (FRZB), interacts with a suppressor of primordial follicle activation WNT3A and may be involved in promoting primordial follicle activation. This study highlights the dynamic changes in gene expression of granulosa cells during primordial follicle activation and provides evidence for a renewed focus into the Wnt signalling pathway’s role in primordial follicle activation.


2021 ◽  
Vol 116 (3) ◽  
pp. e93
Author(s):  
Oren Kashi ◽  
Hadassa Roness ◽  
Itay Spector ◽  
Sanaz DerehHaim ◽  
Elina Tsirulnikov ◽  
...  

Author(s):  
Mahboobeh Amoushahi ◽  
Karin Lykke-Hartmann

Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Carmen Terren ◽  
Michelle Nisolle ◽  
Carine Munaut

Abstract Background Cryopreservation and transplantation of ovarian tissue (OTCTP) represent a promising fertility preservation technique for prepubertal patients or for patients requiring urgent oncological management. However, a major obstacle of this technique is follicle loss due to, among others, accelerated recruitment of primordial follicles during the transplantation process, leading to follicular reserve loss in the graft and thereby potentially reducing its lifespan. This study aimed to assess how cryopreservation itself impacts follicle activation. Results Western blot analysis of the PI3K/PTEN/Akt and mTOR signalling pathways showed that they were activated in mature or juvenile slow-frozen murine ovaries compared to control fresh ovaries. The use of pharmacological inhibitors of follicle signalling pathways during the cryopreservation process decreased cryopreservation-induced follicle recruitment. The second aim of this study was to use in vitro organotypic culture of cryopreserved ovaries and to test pharmacological inhibitors of the PI3K/PTEN/Akt and mTOR pathways. In vitro organotypic culture-induced activation of the PI3K/PTEN/Akt pathway is counteracted by cryopreservation with rapamycin and in vitro culture in the presence of LY294002. These results were confirmed by follicle density quantifications. Indeed, follicle development is affected by in vitro organotypic culture, and PI3K/PTEN/Akt and mTOR pharmacological inhibitors preserve primordial follicle reserve. Conclusions Our findings support the hypothesis that inhibitors of mTOR and PI3K might be an attractive tool to delay primordial follicle activation induced by cryopreservation and culture, thus preserving the ovarian reserve while retaining follicles in a functionally integrated state.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Terren ◽  
M Nisolle ◽  
C Munaut

Abstract Study question Which signalling pathways are implicated in primordial follicle activation induced by cryopreservation and/or organotypic culture? Is it possible to limit this activation through pharmacological inhibitors? Summary answer Our findings provide support for the hypothesis that mTOR and PI3K inhibitors might represent an attractive tool to delay cryopreservation- and culture-induced primordial follicle activation. What is known already Cryopreservation of ovarian tissue containing immature primordial follicles followed by auto-transplantation (OTCTP) is the only option available to preserve the fertility of prepubertal patients or patients requiring urgent therapy for aggressive malignancies. However, a major obstacle in this process is follicular loss immediately after grafting, possibly due to slow neovascularization, apoptosis and/or massive follicular recruitment. In vitro and in vivo studies indicate that the PI3K/PTEN/Akt and mTOR signalling pathways are involved in follicle activation. The transplantation process seems to be the major cause of primordial follicle activation after OTCTP but information about how cryopreservation itself impacts follicle activation is sparse. Study design, size, duration Whole murine ovaries (4-8-weeks old) were cryopreserved by slow freezing and exposed to LY294002 (a powerful PI3K inhibitor) or rapamycin (a specific mTOR inhibitor) during cryopreservation and/or organotypic in vitro culture for a 24 h or 2 days. Participants/materials, setting, methods Western Blot and immunofluorescence analyses were used to determine the activation of PI3K/PTEN/Akt and mTOR signalling pathways in murine ovaries cryopreserved and/or organotypically cultured with/without inhibitors.Follicles were quantified according to their maturation degree on H&E stained histological sections.  Main results and the role of chance Ratio of phosphorylated Akt or rps6 to total proteins (p-Akt/Akt and p-rps6/rps6) was increased in slow-frozen murine ovaries compared to control fresh ovaries, indicating an activation of the PI3K/PTEN/Akt and mTOR signalling pathways. The use of pharmacological inhibitors of follicle signalling pathways (LY294002 (25µM) and rapamycin (1µM)) during the cryopreservation process decreased p-Akt/Akt and p-rps6/rps6 ratios. In vitro organotypic culture for 24 h increased only the activation of the PI3K/PTEN/Akt pathway, as shown by increased p-Akt/Akt ratio in fresh ovaries cultured for 24 h compared to fresh non-cultured ovaries. This activation can be counteracted by cryopreservation of murine ovaries with rapamycin followed by in vitro culture for 24 h in the presence of LY294002. Follicle density quantifications indicated that when cryopreserved ovaries were maintained in culture for 2 days, a decrease of primordial follicle density concomitant with an increase of secondary and more mature follicles were found in comparison to slow-frozen/thawed ovaries without culture. Supplementation of the culture medium with LY294002 and rapamycin for 24 h or 2 days preserved primordial follicle densities compared to ovaries cultured without inhibitors. Limitations, reasons for caution This study is an in vitro study using murine ovaries. To analyze the efficiency of LY294002 and rapamycin to limit cryopreservation and transplantation induced follicle recruitment, these inhibitors should be tested in an in vivo model. Furthermore, these findings will need to be confirmed with human samples. Wider implications of the findings We showed for the first-time that the sequential use of pharmacological inhibitors, rapamycin during the slow freezing process followed by organotypic culture supplemented with LY294002, is effective to limit early primordial follicle depletion. Trial registration number /


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Terren ◽  
M Nisolle ◽  
C Munaut

Abstract Study question Which signalling pathways are implicated in primordial follicle activation induced by cryopreservation and/or organotypic culture? Is it possible to limit this activation through pharmacological inhibitors? Summary answer Our findings provide support for the hypothesis that mTOR and PI3K inhibitors might represent an attractive tool to delay cryopreservation- and culture-induced primordial follicle activation. What is known already Cryopreservation of ovarian tissue containing immature primordial follicles followed by auto-transplantation (OTCTP) is the only option available to preserve the fertility of prepubertal patients or patients requiring urgent therapy for aggressive malignancies. However, a major obstacle in this process is follicular loss immediately after grafting, possibly due to slow neovascularization, apoptosis and/or massive follicular recruitment. In vitro and in vivo studies indicate that the PI3K/PTEN/Akt and mTOR signalling pathways are involved in follicle activation. The transplantation process seems to be the major cause of primordial follicle activation after OTCTP but information about how cryopreservation itself impacts follicle activation is sparse. Study design, size, duration Whole murine ovaries (4–8-weeks old) were cryopreserved by slow freezing and exposed to LY294002 (a powerful PI3K inhibitor) or rapamycin (a specific mTOR inhibitor) during cryopreservation and/or organotypic in vitro culture for a 24 h or 2 days. Participants/materials, setting, methods Western Blot and immunofluorescence analyses were used to determine the activation of PI3K/PTEN/Akt and mTOR signalling pathways in murine ovaries cryopreserved and/or organotypically cultured with/without inhibitors.Follicles were quantified according to their maturation degree on H&E stained histological sections. Main results and the role of chance Ratio of phosphorylated Akt or rps6 to total proteins (p-Akt/Akt and p-rps6/rps6) was increased in slow-frozen murine ovaries compared to control fresh ovaries, indicating an activation of the PI3K/PTEN/Akt and mTOR signalling pathways. The use of pharmacological inhibitors of follicle signalling pathways (LY294002 (25µM) and rapamycin (1µM)) during the cryopreservation process decreased p-Akt/Akt and p-rps6/rps6 ratios. In vitro organotypic culture for 24 h increased only the activation of the PI3K/PTEN/Akt pathway, as shown by increased p-Akt/Akt ratio in fresh ovaries cultured for 24 h compared to fresh non-cultured ovaries. This activation can be counteracted by cryopreservation of murine ovaries with rapamycin followed by in vitro culture for 24 h in the presence of LY294002. Follicle density quantifications indicated that when cryopreserved ovaries were maintained in culture for 2 days, a decrease of primordial follicle density concomitant with an increase of secondary and more mature follicles were found in comparison to slow-frozen/thawed ovaries without culture. Supplementation of the culture medium with LY294002 and rapamycin for 24 h or 2 days preserved primordial follicle densities compared to ovaries cultured without inhibitors. Limitations, reasons for caution This study is an in vitro study using murine ovaries. To analyze the efficiency of LY294002 and rapamycin to limit cryopreservation and transplantation induced follicle recruitment, these inhibitors should be tested in an in vivo model. Furthermore, these findings will need to be confirmed with human samples. Wider implications of the findings: We showed for the first-time that the sequential use of pharmacological inhibitors, rapamycin during the slow freezing process followed by organotypic culture supplemented with LY294002, is effective to limit early primordial follicle depletion. Trial registration number /


Sign in / Sign up

Export Citation Format

Share Document