protein complex
Recently Published Documents


TOTAL DOCUMENTS

4128
(FIVE YEARS 562)

H-INDEX

150
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Ikuo Kurisaki ◽  
Shigenori Tanaka

The physicochemical entity of biological phenomenon in the cell is a network of biochemical reactions and the activity of such a network is regulated by multimeric protein complexes. Mass spectroscopy (MS) experiments and multimeric protein docking simulations based on structural bioinformatics techniques have revealed the molecular-level stoichiometry and static configuration of subcomplexes in their bound forms, then revealing the subcomplex populations and formation orders. Meanwhile, these methodologies are not designed to straightforwardly examine temporal dynamics of multimeric protein assembly and disassembly, essential physicochemical properties to understand functional expression mechanisms of proteins in the biological environment. To address the problem, we had developed an atomistic simulation in the framework of the hybrid Monte Carlo/Molecular Dynamics (hMC/MD) method and succeeded in observing disassembly of homomeric pentamer of the serum amyloid P component protein in experimentally consistent order. In this study, we improved the hMC/MD method to examine disassembly processes of the tryptophan synthase tetramer, a paradigmatic heteromeric protein complex in MS studies. We employed the likelihood-based selection scheme to determine a dissociation-prone subunit pair at each hMC/MD simulation cycle and achieved highly reliable predictions of the disassembly orders with the success rate over 0.9 without a priori knowledge of the MS experiments and structural bioinformatics simulations. We similarly succeeded in reliable predictions for the other three tetrameric protein complexes. These achievements indicate the potential availability of our hMC/MD approach as the general purpose methodology to obtain microscopic and physicochemical insights into multimeric protein complex formation.


2021 ◽  
Author(s):  
Yunda Si ◽  
Chengfei Yan

AlphaFold2 is expected to be able to predict protein complex structures as long as a multiple sequence alignment (MSA) of the interologs of the target protein-protein interaction (PPI) can be provided. However, preparing the MSA of protein-protein interologs is a non-trivial task. In this study, a simplified phylogeny-based approach was applied to generate the MSA of interologs, which was then used as the input of AlphaFold2 for protein complex structure prediction. Extensively benchmarked this protocol on non-redundant PPI dataset, we show complex structures of 79.5% of the bacterial PPIs and 49.8% of the eukaryotic PPIs can be successfully predicted. Considering PPIs may not be conserved in species with long evolutionary distances, we further restricted interologs in the MSA to different taxonomic ranks of the species of the target PPI in protein complex structure prediction. We found the success rates can be increased to 87.9% for the bacterial PPIs and 56.3% of the eukaryotic PPIs if interologs in the MSA are restricted to a specific taxonomic rank of the species of each target PPI. Finally, we show the optimal taxonomic ranks for protein complex structure prediction can be selected with the application of the predicted TM-scores of the output models.


ACS Nano ◽  
2021 ◽  
Author(s):  
Xindong Wang ◽  
Xinyu Wang ◽  
Bo Qu ◽  
Nuernisha Alifu ◽  
Ji Qi ◽  
...  

2021 ◽  
Author(s):  
Isabell Bludau ◽  
Charlotte Nicod ◽  
Claudia Martelli ◽  
Peng Xue ◽  
Moritz Heusel ◽  
...  

Protein complexes constitute the primary functional modules of cellular activity. To respond to perturbations, complexes undergo changes in their abundance, subunit composition or state of modification. Understanding the function of biological systems requires global strategies to capture this contextual state information on protein complexes and interaction networks. Methods based on co-fractionation paired with mass spectrometry have demonstrated the capability for deep biological insight but the scope of studies using this approach has been limited by the large measurement time per biological sample and challenges with data analysis. As such, there has been little uptake of this strategy beyond a few expert labs into the broader life science community despite rich biological information content. We present a rapid integrated experimental and computational workflow to assess the re-organization of protein complexes across multiple cellular states. It enables complex experimental designs requiring increased sample/condition numbers. The workflow combines short gradient chromatography and DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in complex organization. We applied the workflow to study the global protein complex rearrangements of THP-1 cells undergoing monocyte to macrophage differentiation and a subsequent stimulation of macrophage cells with lipopolysaccharide. We observed massive proteome organization in functions related to signaling, cell adhesion, and extracellular matrix during differentiation, and less pronounced changes in processes related to innate immune response induced by the macrophage stimulation. We therefore establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization with broad utility in complex experimental designs.


Nano Letters ◽  
2021 ◽  
Author(s):  
Zhaowei Liu ◽  
Rodrigo A. Moreira ◽  
Ana Dujmović ◽  
Haipei Liu ◽  
Byeongseon Yang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Mahmoud Ramadan Elkazzaz ◽  
Tamer Haydara ◽  
Yousry Esam-Eldin Abo-Amer ◽  
Heba Sahyon ◽  
Israa M Shamkh ◽  
...  

Abstract BackgroundThe COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. Although, ACE2 has been identified as the principal host cell receptor of 2019-nCoV, and it is thought to play a critical role in the virus's entrance into the cell and subsequent infection, many cells can be infected by COVID-19 while also expressing little or no ACE2. Unlike other viral infections, COVID-19 is characterized by widespread and severe systemic manifestations, immune dysregulation and multi-organ involvement. In addition, the range of serious inflammatory, neuropsychiatric and autoimmune diseases called post-COVID syndromes are now left behind as disease tables. This wide and diverse spectrum of diseases seen in COVID-19 cannot be explained by the mechanism of viral tropism mediated by ACE2 and TMPRSS2 receptors. It is possible that different receptor and signaling mechanisms that cannot be explained by the viral tropism mechanism play a role in the pathogenesis of acute systemic effects and chronic post-COVID syndromes in COVID-19. It was showed that COVID-19 infection leads to a loss of smell (anosmia) but the COVID-19 entry receptors, angiotensin-converting enzyme 2 (ACE2), is not expressed in the receptor of olfactory neurons, or its generation is limited to a minor fraction of these neurons. Moreover It was demonstrated that COVID-19 could infect lymphocyte through its ACE2 receptors, but numerous studies found that lymphocytes don't express ACE2 receptors or express it with a little, insufficient amount. It is clear from the information and findings presented and addressed in our article that COVID-19 not only binds to ACE2, but also to additional receptors, leading to more disease lethality and existence of covid-19 symptoms which remain unexplained. As a result, discovering and identifying these receptors could lead to the development of new treatments that could suppress COVID-19 and reduce its severity and pathogenicity. Herein, we insilico discovered that blocking of STRA6 by the SARS-CoV-2 spike protein could disrupt the retinoid signaling mechanism and leads to pathogenetic consequences through some other inflammatory pathways.MethodsThe STRA6 receptor protein were submitted to the server for functional interaction associated network between partners for the STRING (Research Online of Interacting Genes/Proteins Data Basis version 10.0)13 .Docking study of each Spike -ACE 2 and STRA6 receptor protein were carried out using HDOCK server (http://hdock.phys.hust.edu.cn/). The binding mode of Spike -ACE 2 and STRA6 receptor protein is retrieved form the PDB https://www.rcsb.org/ with accession number (7DMU , 5sy1)ResultsOur results showed that COVID-19 Spike protein exhibited a high binding affinity for human STRA6 and a low binding energy with it. The docking score of COVID-19 spike protein with STRA6( -354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21 ) kcal/mol. Spike protein Receptor Binding Domain(RDB) of COVID-19 strongly and efficiently binds to STRA6 receptor, definitely to the RDB vital residues of RBP-binding motif located in STRA6 receptor. The docking of STRA6 target protein with spike viral protein revealed the involvement of the spike protein into the extracellular and membrane part of the STRA6 receptor and amino acids residues of STRA6 along with spike protein which make interactions and play an important role in formation of complexes. The corresponding distances about the residue contacts between proteins STRA6- Spike protein complex are documented here where the STRA6- Spike protein complexes binding site are the RDB of the CHOLESTEROL in STRA6 receptor which bind with interface residue( ARG 511A , VAL 512A THR 515A ALA 516A ASN 519A with interface residue degree (2.965 , 3.595 , 3.286 , 4.592 , and 4.235) representatively, also the ability of the spike to bind to RDB of the STRA 6 protein in the ILE 131C , MET 145C , HIS 86A with interface residue( 4.961 , 4.953 and 3.271) representatively. STRA6- Spike protein complex with PDB ID (5SY1 , 6LZG).ConclusionsSTRA6 is a critical regulator of many biological processes thorough initiating cellular retinol uptake, in different organs and tissues as in immune cells for improving the immune system homeostasis in various populations. Our docking study reveals that COVID-19 spike protein binds directly to the integral membrane receptor (STRA6) in addition to its binding sites of the cholesterol. STRA6 mediates cellular uptake of retinol (vitamin A) by recognizing a molecule of RBP-retinol to trigger release and internalization of retinol . Therefore COVID-19 may leads to downregulation of STRA6 receptor leading to inhibition the regulatory function of retinoic acid and cholesterol helping in existing symptoms and complications including lymhopenia, Nuerogical disorders, Ineffective RIG-I pathway, Interferon inhibition, Cytokine storm, Diabetes, Hormonal imbalance, Thrombosis, and Smell loss. Therefore, we believe that this novel discovery that STRA6 receptor acts as a novel binding receptor for COVID-19 could explain COVID-19 severity and its common symptoms with unknown aetiology . Moreover, retinoic acid metabolism was found to be defective in COVID-19 (cytokine storm), sepsis, ARDS and SIRS .As a result reconstitution of the retinoid signaling may prove to be a valid strategy for COVID-19 management. We suggest that Vitamin A metabolites ,especially, retinoic acid will be promising and effective treatments for COVID-19 infection and its unknown aetiology symptoms. It worth mentioning that aerosolized all- trans retinoic acid and 13 cis retinoic acid is currently under clinical investigation (ClinicalTrials.gov Identifier: NCT05002530, NCT04353180)


Sign in / Sign up

Export Citation Format

Share Document