magnetic field effects
Recently Published Documents


TOTAL DOCUMENTS

1880
(FIVE YEARS 186)

H-INDEX

67
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Adnan ◽  
Waqas Ashraf ◽  
Umar Khan ◽  
Amnah S. Al-Johani ◽  
Naveed Ahmed ◽  
...  

AbstractThe dynamics of nanofluid by considering the role of imposed Lorentz forces, thermal radiations and velocity slip effects over a vertically convectively heated surface is a topic of huge interest. Therefore, the said study is conducted for Al2O3-H2O nanofluid. Mathematical modelling of the problem is done via nanofluid effective correlations comprising the influences of freezing temperature, molecular diameter and similarity transformations. The results for multiple parameters are plotted and provide comprehensive discussion. From the analysis, it is examined that Al2O3-H2O nanofluid motion drops by strengthening Lorentz forces. The temperature in the nanofluid (Al2O3-H2O) is improved by inducing viscous dissipation effects (Ec number), surface convection (Biot number) and thermal radiations (Rd). Moreover, the shear stresses at the surface decreased due to higher magnetic field effects and rises due to velocity slip. A significant rise in Local Nusselt number is observed due to thermal radiations and Biot effects. Finally, enhanced heat transport mechanism in Al2O3-H2O is examined than a conventional liquid. Therefore, nanofluids are better for industrial applications and the uses of conventional liquids are limited due to low thermal conductivity.


Heat Transfer ◽  
2022 ◽  
Author(s):  
Ram Prakash Sharma ◽  
Om Prakash ◽  
Davood Domiri Ganji ◽  
Pentyala Srinivasa Rao ◽  
Satyaranjan Mishra

Author(s):  
Wenming Yang ◽  
Boshi Fang ◽  
Beiying Liu

Abstract Backward-facing step (BFS) flow is a benchmark case study in fluid mechanics. Its control by means of electromagnetic actuation has attracted great interest in recent years. This paper focuses on the effects of a uniform stationary magnetic field on the laminar ferrofluid BFS flows for the Reynolds number range 0.1=Re=400 and different expansion ratios. The coupled ferrohydrodynamic equations, including the microscopically derived magnetization equation, for a two-dimensional domain are solved numerically by an Open FOAM solver after validation and a test of accuracy. The application of a magnetic field causes the corner vortices in the concave corner behind the step to be retracted compared with their positions in the absence of a magnetic field. The maximum percentage of the normalized decrease in length of these eddies reaches 41.23% in our simulations. For small Reynolds numbers (<10), the flow separation points on the convex corner are lowered in the presence of a magnetic field. Furthermore, the dimensionless total pressure drop between the channel inlet and outlet decreases almost linearly with Reynolds number Re, but the drop is greater when a magnetic field is applied. On the whole, the normalized recirculation length of the corner vortex increases nonlinearly with increasing magnetic Reynolds number Rem and Brownian Péclet number Pe, but it tends to constant values in the limits Re ≪ 1 and Re ≫ 1.


2021 ◽  
Vol 923 (2) ◽  
pp. 179
Author(s):  
M. Kornbleuth ◽  
M. Opher ◽  
I. Baliukin ◽  
M. Gkioulidou ◽  
J. D. Richardson ◽  
...  

Abstract Global models of the heliosphere are critical tools used in the interpretation of heliospheric observations. There are several three-dimensional magnetohydrodynamic (MHD) heliospheric models that rely on different strategies and assumptions. Until now only one paper has compared global heliosphere models, but without magnetic field effects. We compare the results of two different MHD models, the BU and Moscow models. Both models use identical boundary conditions to compare how different numerical approaches and physical assumptions contribute to the heliospheric solution. Based on the different numerical treatments of discontinuities, the BU model allows for the presence of magnetic reconnection, while the Moscow model does not. Both models predict collimation of the solar outflow in the heliosheath by the solar magnetic field and produce a split tail where the solar magnetic field confines the charged solar particles into distinct north and south columns that become lobes. In the BU model, the interstellar medium (ISM) flows between the two lobes at large distances due to MHD instabilities and reconnection. Reconnection in the BU model at the port flank affects the draping of the interstellar magnetic field in the immediate vicinity of the heliopause. Different draping in the models cause different ISM pressures, yielding different heliosheath thicknesses and boundary locations, with the largest effects at high latitudes. The BU model heliosheath is 15% thinner and the heliopause is 7% more inwards at the north pole relative to the Moscow model. These differences in the two plasma solutions may manifest themselves in energetic neutral atom measurements of the heliosphere.


2021 ◽  
Vol 923 (2) ◽  
pp. 210
Author(s):  
Boyan Hristov ◽  
Peter Hoeflich ◽  
David C. Collins

Abstract We present a study of the influence of magnetic field strength and morphology in Type Ia supernovae and their late-time light curves and spectra. In order to both capture self-consistent magnetic field topologies and evolve our models to late times, a two-stage approach is taken. We study the early deflagration phase (∼1 s) using a variety of magnetic field strengths and find that the topology of the field is set by the burning, independent of the initial strength. We study late-time (∼1000 days) light curves and spectra with a variety of magnetic field topologies and infer magnetic field strengths from observed supernovae. Lower limits are found to be 106 G. This is determined by the escape, or lack thereof, of positrons that are tied to the magnetic field. The first stage employs 3D MHD and a local burning approximation and uses the code Enzo. The second stage employs a hybrid approach, with 3D radiation and positron transport and spherical hydrodynamics. The second stage uses the code HYDRA. In our models, magnetic field amplification remains small during the early deflagration phase. Late-time spectra bear the imprint of both magnetic field strength and morphology. Implications for alternative explosion scenarios are discussed.


2021 ◽  
Vol 28 (12) ◽  
pp. 122701
Author(s):  
S. M. Lewis ◽  
M. R. Weis ◽  
C. S. Speas ◽  
M. Kimmel ◽  
R. D. Bengtson ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Adnan ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
Nawaf N. Hamadneh ◽  
...  

Heat transfer investigation in the nanofluids is significant for real world applications. The investigation of heat transfer over a stretchable magnetized surface has broad applications in various industries. Therefore, heat transfer featuring in the nanofluid synthesized by various shaped Cu and H2O is organized over a shrinking surface. The problem is organized properly via similarity equations by inducing the influences of magnetic field. Then, OVIM is adopted and performed the solutions for the particular model. The results are furnished for the governing quantities over the feasible region and deeply discussed in the view of their physical significance. It is examined that the nanoliquids angular motion and shear stresses drops by strengthen magnetic field effects. Moreover, nanoliquid containing brick Cu-particles is better heat conductor and could be used broadly for industrial applications as for as heat transport concerned. In end, authentication of the study is provided by comparing the results with previous science literature and an excellent agreement is seems between them.


Sign in / Sign up

Export Citation Format

Share Document