airfoil surface
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 52)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Habtamu Beri ◽  
Perumalla Janaki Ramulu

In this study, NACA0018 airfoil surface conformity test was conducted using API tracker3 in combination with SpatialAnalyzer (SA) and modeling software SolidWorks. Plaster of Paris is used as a plug making material and a woven-type fiberglass is used as mold and airfoil surface making material. For airfoil surface analysis, three-dimensional model of the airfoil surface was developed in SolidWorks software and imported in IGES file format to SpatialAnalyzer (SA) software. Then, measurements were taken from manufactured airfoil surface using laser tracker through surface scanning method. Surface conformity test was conducted through fitting of measured points to surface model imported from SolidWorks to SpatialAnalyzer (SA) software. The optimized fit summary result shows that the average fit difference is 0.0 having standard deviation from 0.22224 from the average and zero with RMS of 0.2210. The maximum magnitude of the difference including x and y together is 0.5336 and the minimum −0.5077. Thus, with a given range of surface quality specification, laser tracker is an easy and reliable measurement and inspection tool to be considered.


Author(s):  
Mohamed Ibren ◽  
Amelda Dianne Andan ◽  
Waqar Asrar ◽  
Erwin Sulaeman

A review on passive acoustic control of airfoil self-noise by means of porous trailing edge is presented. Porous surfaces are defined using various terms such as porosity, permeability, resistivity, porosity constant, dimensionless permeability, flow control severity and tortuosity. The primary purpose of this review paper is to provide key findings regarding the sources and mitigation techniques of self-induced noise generated by airfoils. In addition, various parametric design concepts were presented, which are critically important for porous-airfoil design specifications. Most research focus on experimentation with some recent efforts on numerical simulations. Detail study on flow topology is required to fully understand the unsteady flow nature. In general, noise on the airfoil surface is linked to the vortex shedding, instabilities on the surface, as well as feedback mechanism. In addition, acoustic scattering can be minimized by reducing extent of the porous region from the trailing edge while increasing resistivity. Moreover, blowing might also be another means of reducing noise near the trailing edge. Ultimately, understanding the flow physics well provides a way to unveil the unknowns in self-induced airfoil noise generation, mitigation, and control.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 396
Author(s):  
Takuto Ogawa ◽  
Kengo Asada ◽  
Satoshi Sekimoto ◽  
Tomoaki Tatsukawa ◽  
Kozo Fujii

A computational study was conducted on flows over an NACA0015 airfoil with dielectric barrier discharge (DBD) plasma. The separated flows were controlled by a DBD plasma actuator installed at the 5% chord position from the leading edge, where operated AC voltage was modulated with the duty cycle not given a priori but dynamically changed based on the flow fluctuations over the airfoil surface. A single-point pressure sensor was installed at the 40% chord position of the airfoil surface and the DBD plasma actuator was activated and deactivated based on the strength of the measured pressure fluctuations. The Reynolds number was set to 63,000 and flows at angles of attack of 12 and 16 degrees were considered. The three-dimensional compressible Navier–Stokes equations including the DBD plasma actuator body force were solved using an implicit large-eddy simulation. Good flow control was observed, and the burst frequency proven to be effective in previous fixed burst frequency studies is automatically realized by this approach. The burst frequency is related to the characteristic pressure fluctuation; our approach was improved based on the findings. This improved approach realizes the effective burst frequency with a lower control cost and is robust to changing the angle of attack.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 311
Author(s):  
Ye Chen ◽  
Zhongxi Hou ◽  
Xiaolong Deng ◽  
Zheng Guo ◽  
Shuai Shao ◽  
...  

The lift of an aircraft can be effectively enhanced by circulation control (CC) technology at subsonic speeds, but the efficiency at transonic speeds is greatly decreased. The underlying mechanism of this phenomenon is not fully understood. In this study, Reynolds averaged Navier—Stokes simulation with k−ω shear stress transport model was utilized to investigate the mechanism of lift enhancement by CC in transonic flow. For validation, the numerical CC results were compared with the NASA experimental data obtained for transonic CC airfoil. Thereafter, the RAE2822 airfoil was modified with a Coanda surface. The lift enhancement effects of CC via steady blowing with different momentum coefficients were tested at Ma=0.3 and 0.8 at α=3∘, and various fluid mechanics phenomena were investigated. The results indicate that the flow structure of the CC jet is insensitive to the incoming flow conditions because of the similarity to the local static pressure field around the trailing edge of the airfoil. Owing to the appearance of shockwaves on the airfoil surface in the transonic regime, the performance of the CC jet is restricted to the trailing edge of the airfoil. Transonic CC achieved a slight improvement in aerodynamic performance owing to a favorable shift in the shockwave pattern and accelerated flow in the separation region on the airfoil surfaces. Revealing the mechanism of lift enhancement of CC in the transonic regime can facilitate the rational design of new fluidic actuators with high activity and expand the potential applications of CC technology.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6140
Author(s):  
Jan Niklas Haus ◽  
Martin Schwerter ◽  
Michael Schneider ◽  
Marcel Gäding ◽  
Monika Leester-Schädel ◽  
...  

Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as for the actual application, the requirements for the quality of the airfoil surface are demanding. Consequently, a new class of sensors is required, which can be flush-integrated into the airfoil surface, may be used under wet conditions—even under water—and should withstand the harsh environment of a high-lift scenario. A new miniature silicon on insulator (SOI)-based MEMS pressure sensor, which allows integration into airfoils in a flip-chip configuration, is presented. An internal, highly doped silicon wiring with “butterfly” geometry combined with through glass via (TGV) technology enables a watertight and application-suitable chip-scale-package (CSP). The chips were produced by reliable batch microfabrication including femtosecond laser processes at the wafer-level. Sensor characterization demonstrates a high resolution of 38 mVV−1 bar−1. The stepless ultra-smooth and electrically passivated sensor surface can be coated with thin surface protection layers to further enhance robustness against harsh environments. Accordingly, protective coatings of amorphous hydrogenated silicon nitride (a-SiN:H) and amorphous hydrogenated silicon carbide (a-SiC:H) were investigated in experiments simulating environments with high-velocity impacting particles. Topographic damage quantification demonstrates the superior robustness of a-SiC:H coatings and validates their applicability to future sensors.


2021 ◽  
Vol 5 ◽  
pp. 90-103
Author(s):  
Dieter Bohn ◽  
Tatsuya Uno ◽  
Takeshi Yoshida ◽  
Christian Betcher ◽  
Jan Frohnheiser ◽  
...  

One common approach for anti-erosion measures in low pressure steam turbines is to equip a hollow stator vane with slots on the airfoil surface in order to remove the water film by suction and consequently reduce the amount of secondary droplets. The purpose of this paper is to build an understanding of the predominant effects in fluid-film interaction and to examine the suitability of modern numerical methods for the design process of such slots. The performance of a suction slot in terms of collection rate and air leakage is investigated numerically in a flatplate setup with upstream injection of water. In order to model the relevant phenomena (film transport, edge stripping of droplets, transport of droplets in the surrounding fluid, wall impingement of droplets) an unsteady Eulerian-Lagrangian simulation setup is applied. The accuracy of the numerical approach is assessed by comparison with experimental measurements. The comparison of four cases with the measured data demonstrates that the chosen simulation approach is able to predict the main features of film flow and interaction with the surrounding fluid. The collection rate as well as fluid film properties show the same qualitative dependency from water mass flow rate and air velocity.


2021 ◽  
Author(s):  
Fadi Magdy R Mishriky ◽  
Paul Walsh

Over the last decade, aircraft morphing technology has drawn a lot of attention in the aerospace community, because it is likely to improve the aerodynamic performance and the versatility of aircraft at different flight regimes. With the fast paced advancements in this field, a parallel stream of research is studying different materials and designs to develop reliable morphing skins. A promising candidate for a viable morphing skin is the sliding skin, where two or more rigid surfaces remain in contact and slide against each other during morphing. The overlapping between each two panels create a backward-facing step on the airfoil surface which has a critical effect on the aerodynamics of the wing. This paper presents a numerical study of the effect of employing a backward-facing step on the suction side of a National Advisory Committee for Aeronautics (NACA) 2412 airfoil at a high Reynolds number of 5.9 × 106. The effects of the step location on the lift coefficient, drag coefficient and critical angle of attack are studied to find a favorable location for the step along the chord-wise direction. Results showed that employing a step on the suction side of the NACA 2412 airfoil can adversely affect the aforementioned aerodynamic properties. A drop of 21.1% in value of the lift coefficient and an increase of 120.8% in the drag coefficient were observed in case of a step located at 25% of the chord length. However, these effects are mitigated by shifting the step location towards the trailing edge. Introducing a step on the airfoil caused the airfoil’s thickness to change, which in turn has affected the transition point of the viscous boundary layer from laminar to turbulent. The location of the step, prior or post the transition point, has a noteworthy effect on the pressure and shear stress distribution, and consequently on the values of the lift and drag coefficients.


2021 ◽  
Vol 263 (4) ◽  
pp. 2916-2929
Author(s):  
Arif Muhammad Irsalan ◽  
Garret C. Y. Lam ◽  
Randolph C. K. Leung

In this paper, a novel passive method for airfoil tonal noise reduction is proposed using a configuration of two segmented elastic panels mounted on the airfoil. Numerical investigation using perturbation evolution method is carried out at a low Reynolds number based on airfoil chord of 5x10 and an angle of attack of 5. The passive method of employing a single panel has shown promising tonal noise reduction capabilities where the resonating panel located just ahead of the sharp growth of boundary layer instability within the airfoil separation bubble provided the strongest reduction of instabilities and noise reduction up to 3 dB has been achieved. The idea is extended in the present study by employing a two-panel configuration based on the localized flow characteristics over the airfoil surface. Five different panel configurations are designed and their effectiveness in terms of tonal noise reduction is evaluated and compared with baseline configuration. The azimuth and spectral analyses indicate the different extent of noise reduction for each configuration and even noise amplification in one of them. A significant noise reduction up to 8 dB is observed for the optimum configuration indicating the effectiveness of this novel method for devices operating at low Reynolds number.


2021 ◽  
Vol 263 (5) ◽  
pp. 1652-1663
Author(s):  
Yehia Salama ◽  
Joana Rocha

In this work, a new noise suppressing airfoil trailing-edge design, termed "finned serrations", is presented and numerically evaluated. This brand-new approach consists of the superposition of two different noise suppressing morphological features inspired by the wings of the owl. Embedded Large Eddy Simulations are employed in tandem with the Ffowcs WilliamsHawkings model to predict and analyze the design aerodynamics and aeroacoustics and compare the obtained output to that of a flat trailing-edge airfoil. Finned serrations are shown to combine the effects of having finlets and serrations. Because of the bluntness of the serration roots, the airfoil is subject to vortex shedding, while the flow is generally decorrelated in the spanwise direction, thanks to the channeling effect of the finlets. The turbulent kinetic energy distribution close to the airfoil trailing-edge surface is also significantly altered, as the more energetic eddies are convected away from the airfoil surface. Lastly, mixing across the airfoil surface is improved, and the average size of the turbulent coherent structures near the airfoil trailing-edge is reduced. The presented results suggest that the coupling of different noise-suppressing mechanisms is a promising path to explore, with the goal of coming up with new, quieter trailing-edge configurations.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bin Xia ◽  
Xianghua Xu ◽  
Xingang Liang

AbstractA newly developed frosting simulation method, p-VOF method, is applied to simulate the dynamic frost formation on the NACA0012 airfoil under strong convection. The p-VOF method is a pseudo VOF method of the multiphase flow simulation with phase change. By solving a simplified mass conservation equation explicitly instead of the original volume fraction equations in CFD software, the efficiency and robustness of calculation are greatly improved. This progress makes it possible to predict a long-time frost formation. The p-VOF method was successfully applied to the simulation of dynamic frosting on the two-dimensional NACA0012 airfoil under strong convection conditions with constant frost physical properties. The simulation result shows that the average thickness of the frost layer increases, and the frost bulges and flow separation appear earlier, when the airfoil surface temperature decreases or the air humidity increases. The frost bulges and flow separation appear earlier, when the air velocity is faster, the growth rate of the frost layer at the early stage is greater, but the final frost layer is thinner.


Sign in / Sign up

Export Citation Format

Share Document