planar case
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 34)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Vincenzo Amato ◽  
Andrea Gentile ◽  
Alba Lia Masiello

AbstractIn the last decades, comparison results of Talenti type for Elliptic Problems with Dirichlet boundary conditions have been widely investigated. In this paper, we generalize the results obtained in Alvino et al. (Commun Pure Appl Math, to appear) to the case of p-Laplace operator with Robin boundary conditions. The point-wise comparison, obtained in Alvino et al. (to appear) only in the planar case, holds true in any dimension if p is sufficiently small.


Author(s):  
Jin-Yi Cai ◽  
Zhiguo Fu ◽  
Heng Guo ◽  
Tyson Williams

AbstractWe prove a complexity classification for Holant problems defined by an arbitrary set of complex-valued symmetric constraint functions on Boolean variables. This is to specifically answer the question: Is the Fisher-Kasteleyn-Temperley (FKT) algorithm under a holographic transformation (Valiant, SIAM J. Comput. 37(5), 1565–1594 2008) a universal strategy to obtain polynomial-time algorithms for problems over planar graphs that are intractable on general graphs? There are problems that are #P-hard on general graphs but polynomial-time solvable on planar graphs. For spin systems (Kowalczyk 2010) and counting constraint satisfaction problems (#CSP) (Guo and Williams, J. Comput. Syst. Sci. 107, 1–27 2020), a recurring theme has emerged that a holographic reduction to FKT precisely captures these problems. Surprisingly, for Holant, we discover new planar tractable problems that are not expressible by a holographic reduction to FKT. In particular, a straightforward formulation of a dichotomy for planar Holant problems along the above recurring theme is false. A dichotomy theorem for #CSPd, which denotes #CSP where every variable appears a multiple of d times, has been an important tool in previous work. However the proof for the #CSPd dichotomy violates planarity, and it does not generalize to the planar case easily. In fact, due to our newly discovered tractable problems, the putative form of a planar #CSPd dichotomy is false when d ≥ 5. Nevertheless, we prove a dichotomy for planar #CSP2. In this case, the putative form of the dichotomy is true. (This is presented in Part II of the paper.) We manage to prove the planar Holant dichotomy relying only on this planar #CSP2 dichotomy, without resorting to a more general planar #CSPd dichotomy for d ≥ 3. A special case of the new polynomial-time computable problems is counting perfect matchings (#PM) over k-uniform hypergraphs when the incidence graph is planar and k ≥ 5. The same problem is #P-hard when k = 3 or k = 4, which is also a consequence of our dichotomy. When k = 2, it becomes #PM over planar graphs and is tractable again. More generally, over hypergraphs with specified hyperedge sizes and the same planarity assumption, #PM is polynomial-time computable if the greatest common divisor (gcd) of all hyperedge sizes is at least 5. It is worth noting that it is the gcd, and not a bound on hyperedge sizes, that is the criterion for tractability.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vesa Julin ◽  
Joonas Niinikoski

Abstract We consider the flat flow solution to the mean curvature equation with forcing in ℝ n {\mathbb{R}^{n}} . Our main result states that tangential balls in ℝ n {\mathbb{R}^{n}} under a flat flow with a bounded forcing term will experience fattening, which generalizes the result in [N. Fusco, V. Julin and M. Morini, Stationary sets and asymptotic behavior of the mean curvature flow with forcing in the plane, preprint 2020, https://arxiv.org/abs/2004.07734] from the planar case to higher dimensions. Then, as in the planar case, we characterize stationary sets in ℝ n {\mathbb{R}^{n}} for a constant forcing term as finite unions of equisize balls with mutually positive distance.


2021 ◽  
Vol 68 (4) ◽  
pp. 1-26
Author(s):  
Vincent Cohen-Addad ◽  
Éric Colin De Verdière ◽  
Dániel Marx ◽  
Arnaud De Mesmay

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph  G embedded on a surface S is a subgraph of  G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus  G has a cut graph of length at most a given value. We prove a time lower bound for this problem of n Ω( g log g ) conditionally to the ETH. In other words, the first n O(g) -time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year-old question of these authors. A multiway cut of an undirected graph  G with t distinguished vertices, called terminals , is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph  G has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of n Ω( gt + g 2 + t log ( g + t )) , conditionally to the ETH, for any choice of the genus  g ≥ 0 of the graph and the number of terminals  t ≥ 4. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a gridlike structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value  G of the genus.


2021 ◽  
Vol 53 (2) ◽  
pp. 510-536
Author(s):  
Quentin Le Gall ◽  
Bartłomiej Błaszczyszyn ◽  
Élie Cali ◽  
Taoufik En-Najjary

AbstractIn this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson–Voronoi tessellation in the d-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition Z of these two processes, two points of Z are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0–1 law, a subcritical phase, and a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.


Author(s):  
Alessandro Cammarata

AbstractModeling a flexible multibody system employing the floating frame of reference formulation (FFRF) requires significant computational resources when the flexible components are represented through finite elements. Reducing the complexity of the governing equations of motion through component-level reduced-order models (ROM) can be an effective strategy. Usually, the assumed field of deformation is created considering local modes, such as normal, static, or attachment modes, obtained from a single component. A different approach has been proposed in Cammarata (J. Sound Vibr. 489, 115668, 2020) for planar systems only and involves a reduction based on global flexible modes of the whole mechanism. Through the use of global modes, i.e., obtained from an eigenvalue analysis performed on the linearized dynamic system around a certain configuration, it is possible to obtain a modal basis for the flexible coordinates of the multibody system. Here, the same method is extended to spatial mechanisms to verify its applicability and reliability. It is demonstrated that global modes can be used to create ROM both at the system and component levels. Studies on the complexity of the method reveal this approach can significantly reduce the calculation times and the computational effort compared to the unreduced model. Unlike the planar case, the numerical experiments reveal that the system-level approach based on global modes can suffer from slow convergence speed and low accuracy in results.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 453
Author(s):  
Nicolas Dupin ◽  
Frank Nielsen ◽  
El-Ghazali Talbi

With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover M<N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M+1)NlogN) and O(K(M+1)N2) time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.


Machines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 30
Author(s):  
Cecilia Scoccia ◽  
Giacomo Palmieri ◽  
Matteo Claudio Palpacelli ◽  
Massimo Callegari

In this work, a comprehensive control strategy for obstacle avoidance in redundant manipulation is presented, consisting of a combination of off-line path planning algorithms with on-line motion control. Path planning allows the avoidance of fixed obstacles detected before the start of the robot’s motion; it is based on the potential fields method combined with a smoothing process realized by means of interpolation with Bezier curves. The on-line motion control is designed to compensate for the motion of the obstacles and to avoid collisions along the kinematic chain of the manipulator; it is realized by means of a velocity control law based on the null space method for redundancy control. A new term is introduced in the control law to take into account the speed of the obstacles as well as their position. Simulations on a simplified planar case are presented to assess the validity of the algorithms and to estimate the computational effort in order to verify the transferability of our approach to a real system.


Sign in / Sign up

Export Citation Format

Share Document