rare isotope
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 4)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1226-1236
Author(s):  
Alexandra Gade

One ambitious goal of nuclear physics is a predictive model of all nuclei, including the ones at the fringes of the nuclear chart which may remain out of experimental reach. Certain regions of the chart are providing formidable testing grounds for nuclear models in this quest as they display rapid structural evolution from one nucleus to another or phenomena such as shape coexistence. Observables measured for such nuclei can confirm or refute our understanding of the driving forces of the evolution of nuclear structure away from stability where textbook nuclear physics has been proven to not apply anymore. This paper briefly reviews the emerging picture for the very neutron-rich Fe, Cr, and Ti isotopes within the so-called N=40 island of inversion as obtained with nucleon knockout reactions. These have provided some of the most detailed nuclear spectroscopy in very neutron-rich nuclei produced at rare-isotope facilities. The results indicate that our current understanding, as encoded in large-scale shell-model calculations, appears correct with exciting predictions for the N=40 island of inversion left to be proven in the experiment. A bright future emerges with predictions of continued shell evolution and shape coexistence out to neutron number N=50, below 78Ni on the chart of nuclei.


2021 ◽  
Author(s):  
◽  
Lisa Dowling

<p>Mountain glaciers are sensitive climate indicators, as climate variability drives mass changes that are expressed in glacier length fluctuations. These length changes are preserved in the geological record, thus offering the potential to generate new palaeoclimate proxy data that can be used to extend instrumental climate records. This study presents geomorphological mapping and cosmogenic ¹⁰Be surface exposure dating of the Holocene moraines at Dart Glacier, New Zealand. These findings show that an early Holocene advance (~6 km longer than present-day) took place ~7817 ± 336 years ago. Moraine ages also show that a more restricted glacier readvance (~4 km longer than present-day) occurred ~321 ± 44 years ago. Through better constraining the timing and magnitude of Holocene glacier length changes, we extend the ~100-year history of observational records in the upper Dart valley.  Net retreat of Dart Glacier during the Holocene is consistent with other moraine chronologies from New Zealand, which supports existing hypotheses that suggest summer insolation was the dominant driver of multi-millennial climate change at southern mid-latitudes during the current interglacial. Individual moraine forming events at Dart Glacier also coincide with moraine ages from several other catchments in the Southern Alps and likely reflect shorter-term (decadal-centennial-scale) climatic changes. The new geological record constraints of length changes at Dart Glacier offer the opportunity to test such hypotheses more formally using physics-based modelling.  Connecting Holocene moraine records to historical glacier observations using ¹⁰Be surface exposure dating requires consistently low background levels of this rare isotope. Systematic blank experiments show that concentrated analytical grade hydrofluoric acid and reused beakers are likely the largest contributors of ¹⁰Be to the average process blank in the VUW Cosmogenic Laboratory. Based on these findings I recommend small methodological improvements that could be implemented to lower process blank ratios for routine application of ¹⁰Be surface exposure dating to near-historic glacial landforms.</p>


2021 ◽  
Author(s):  
◽  
Lisa Dowling

<p>Mountain glaciers are sensitive climate indicators, as climate variability drives mass changes that are expressed in glacier length fluctuations. These length changes are preserved in the geological record, thus offering the potential to generate new palaeoclimate proxy data that can be used to extend instrumental climate records. This study presents geomorphological mapping and cosmogenic ¹⁰Be surface exposure dating of the Holocene moraines at Dart Glacier, New Zealand. These findings show that an early Holocene advance (~6 km longer than present-day) took place ~7817 ± 336 years ago. Moraine ages also show that a more restricted glacier readvance (~4 km longer than present-day) occurred ~321 ± 44 years ago. Through better constraining the timing and magnitude of Holocene glacier length changes, we extend the ~100-year history of observational records in the upper Dart valley.  Net retreat of Dart Glacier during the Holocene is consistent with other moraine chronologies from New Zealand, which supports existing hypotheses that suggest summer insolation was the dominant driver of multi-millennial climate change at southern mid-latitudes during the current interglacial. Individual moraine forming events at Dart Glacier also coincide with moraine ages from several other catchments in the Southern Alps and likely reflect shorter-term (decadal-centennial-scale) climatic changes. The new geological record constraints of length changes at Dart Glacier offer the opportunity to test such hypotheses more formally using physics-based modelling.  Connecting Holocene moraine records to historical glacier observations using ¹⁰Be surface exposure dating requires consistently low background levels of this rare isotope. Systematic blank experiments show that concentrated analytical grade hydrofluoric acid and reused beakers are likely the largest contributors of ¹⁰Be to the average process blank in the VUW Cosmogenic Laboratory. Based on these findings I recommend small methodological improvements that could be implemented to lower process blank ratios for routine application of ¹⁰Be surface exposure dating to near-historic glacial landforms.</p>


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
J. Ash ◽  
H. Iwasaki ◽  
T. Mijatović ◽  
T. Budner ◽  
R. Elder ◽  
...  

2021 ◽  
pp. 1-48
Author(s):  
Alok Chakrabarti ◽  
Vaishali Naik ◽  
Siddhartha Dechoudhury
Keyword(s):  

2021 ◽  
pp. 61-106
Author(s):  
Alok Chakrabarti ◽  
Vaishali Naik ◽  
Siddhartha Dechoudhury

2021 ◽  
pp. 49-60
Author(s):  
Alok Chakrabarti ◽  
Vaishali Naik ◽  
Siddhartha Dechoudhury
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1289
Author(s):  
Dmitri Babikov ◽  
Elizaveta Grushnikova ◽  
Igor Gayday ◽  
Alexander Teplukhin

A theoretical approach is developed for the description of all possible recombination pathways in the ozone forming reaction, without neglecting any process a priori, and without decoupling the individual pathways one from another. These pathways become physically distinct when a rare isotope of oxygen is introduced, such as 18O, which represents a sensitive probe of the ozone forming reaction. Each isotopologue of O3 contains two types of physically distinct entrance channels and two types of physically distinct product wells, creating four recombination pathways. Calculations are done for singly and doubly substituted isotopologues of ozone, eight rate coefficients total. Two pathways for the formation of asymmetric ozone isotopomer exhibit rather different rate coefficients, indicating large isotope effect driven by ΔZPE-difference. Rate coefficient for the formation of symmetric isotopomer of ozone (third pathway) is found to be in between of those two, while the rate of insertion pathway is smaller by two orders of magnitude. These trends are in good agreement with experiments, for both singly and doubly substituted ozone. The total formation rates for asymmetric isotopomers are found to be somewhat larger than those for symmetric isotopomers, but not as much as in the experiment. Overall, the distribution of lifetimes is found to be very similar for the metastable states in symmetric and asymmetric ozone isotopomers.


2021 ◽  
Vol 251 ◽  
pp. 04018
Author(s):  
Mario Cromaz ◽  
Eli Dart ◽  
Eric Pouyoul ◽  
Gustav R. Jansen

The Gamma Ray Energy Tracking Array (GRETA) is a state of the art gamma-ray spectrometer being built at Lawrence Berkeley National Laboratory to be first sited at the Facility for Rare Isotope Beams (FRIB) at Michigan State University. A key design requirement for the spectrometer is to perform gamma-ray tracking in near real time. To meet this requirement we have used an inline, streaming approach to signal processing in the GRETA data acquisition system, using a GPU-equipped computing cluster. The data stream will reach 480 thousand events per second at an aggregate data rate of 4 gigabytes per second at full design capacity. We have been able to simplify the architecture of the streaming system greatly by interfacing the FPGA-based detector electronics with the computing cluster using standard network technology. A set of highperformance software components to implement queuing, flow control, event processing and event building have been developed, all in a streaming environment which matches detector performance. Prototypes of all high-performance components have been completed and meet design specifications.


2021 ◽  
Vol 52 (4) ◽  
pp. 15-17
Author(s):  
A. Tumino ◽  
J. Jose ◽  
M. La Cognata

Unstable isotopes govern the late evolution of stars and their explosive phenomena, such as novae, supernovae, x-ray bursters and neutron star mergers. Most of them are still out of reach of terrestrial experiments. Upcoming facilities will allow scientists to produce/observe them and shed light on fundamental questions about our universe.


Sign in / Sign up

Export Citation Format

Share Document