aqueous reactions
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Zechen Yu ◽  
Myoseon Jang ◽  
Soontae Kim ◽  
Kyuwon Son ◽  
Sanghee Han ◽  
...  

Abstract. The prediction of Secondary Organic Aerosol (SOA) in regional scales is traditionally performed by using gas-particle partitioning models. In the presence of inorganic salted wet aerosols, aqueous reactions of semivolatile organic compounds can also significantly contribute to SOA formation. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model utilizes explicit gas chemistry to better predict SOA mass from multiphase reactions. In this work, the UNIPAR model was incorporated with the Comprehensive Air Quality Model with Extensions (CAMx) to predict the ambient concentration of organic matter (OM) in urban atmospheres during the Korean-United States Air Quality (2016 KORUS-AQ) campaign. The SOA mass predicted with the CAMx-UNIPAR model changed with varying levels of humidity and emissions and in turn, has the potential to improve the accuracy of OM simulations. The CAMx-UNIPAR model significantly improved the simulation of SOA formation under the wet condition, which often occurred during the KORUS-AQ campaign, through the consideration of aqueous reactions of reactive organic species and gas-aqueous partitioning. The contribution of aromatic SOA to total OM was significant during the low-level transport/haze period (24–31 May 2016) because aromatic oxygenated products are hydrophilic and reactive in aqueous aerosols. The OM mass predicted with the CAMx-UNIPAR model was compared with that predicted with the CAMx model integrated with the conventional two product model (SOAP). Based on estimated statistical parameters to predict OM mass, the performance of CAMx-UNIPAR was noticeably better than the conventional CAMx model although both SOA models underestimated OM compared to observed values, possibly due to missing precursor hydrocarbons such as sesquiterpenes, alkanes, and intermediate VOCs. The CAMx-UNIPAR model simulation suggested that in the urban areas of South Korea, terpene and anthropogenic emissions significantly contribute to SOA formation while isoprene SOA minimally impacts SOA formation.


2020 ◽  
Vol 55 (1) ◽  
pp. 260-270
Author(s):  
Jinlai Wei ◽  
Ting Fang ◽  
Cynthia Wong ◽  
Pascale S. J. Lakey ◽  
Sergey A. Nizkorodov ◽  
...  

2019 ◽  
Vol 19 (8) ◽  
pp. 5719-5735 ◽  
Author(s):  
Chufan Zhou ◽  
Myoseon Jang ◽  
Zechen Yu

Abstract. The formation of secondary organic aerosols (SOAs) from the photooxidation of three monoalkylbenzenes (toluene, ethylbenzene, and n-propylbenzene) in the presence of inorganic seeds (SO42-–NH4+–H2O system) under varying NOx levels has been simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. The evolution of the volatility–reactivity distribution (mass-based stoichiometric coefficient, αi) of oxygenated products, which were created by the near-explicit gas kinetic mechanism, was integrated with the model using the parameters linked to the concentrations of HO2 and RO2 radicals. This dynamic distribution was used to estimate the model parameters related to the thermodynamic constants of the products in multiple phases (e.g., the gas phase, organic phase, and inorganic phase) and the reaction rate constants in the aerosol phase. The SOA mass was predicted through the partitioning and aerosol chemistry processes of the oxygenated products in both the organic phase and aqueous solution containing electrolytes, with the assumption of organic–inorganic phase separation. The prediction of the time series SOA mass (12 h), against the aerosol data obtained from an outdoor photochemical smog chamber, was improved by the dynamic αi set compared to the prediction using the fixed αi set. Overall, the effect of an aqueous phase containing electrolytes on SOA yields was more important than that of the NOx level under our simulated conditions or the utilization of the age-driven αi set. Regardless of the NOx conditions, the SOA yields for the three aromatics were significantly higher in the presence of wet electrolytic seeds than those obtained with dry seeds or no seed. When increasing the NOx level, the fraction of organic matter (OM) produced by aqueous reactions to the total OM increased due to the increased formation of relatively volatile organic nitrates and peroxyacyl-nitrate-like products. The predicted partitioning mass fraction increased as the alkyl chain length increased but the organic mass produced via aerosol-phase reactions decreased due to the increased activity coefficient of the organic compounds containing longer alkyl chains. Overall, the lower mass-based SOA yield was seen in the longer alkyl-substituted benzene in both the presence and absence of inorganic-seeded aerosols. However, the difference of mole-based SOA yields of three monoalkylbenzenes becomes small because the highly reactive organic species (i.e., glyoxal) mainly originates from ring opening products without an alkyl side chain. UNIPAR predicted the conversion of hydrophilic, acidic sulfur species to non-electrolytic dialkyl organosulfate (diOS) in the aerosol. Thus, the model predicted the impact of diOS on both hygroscopicity and acidity, which subsequently influenced aerosol growth via aqueous reactions.


2019 ◽  
pp. 109-130
Author(s):  
Patrick E. McMahon ◽  
Rosemary F. McMahon ◽  
Bohdan B. Khomtchouk
Keyword(s):  

Author(s):  
Richie Kaur ◽  
Brandi M. Hudson ◽  
Joseph Draper ◽  
Dean J. Tantillo ◽  
Cort Anastasio

Sign in / Sign up

Export Citation Format

Share Document