boundary current
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 193)

H-INDEX

56
(FIVE YEARS 6)

2022 ◽  
Author(s):  
◽  
Astrid Pacini

The ventilation of intermediate waters in the Labrador Sea has important implications for the strength of the Atlantic Meridional Overturning Circulation. Boundary current-interior interactions regulate the exchange of properties between the slope and the basin, which in turn regulates the magnitude of interior convection and the export of ventilated waters from the subpolar gyre. This thesis characterizes theWest Greenland Boundary Current System near Cape Farewell across a range of spatio-temporal scales. The boundary current system is composed of three velocity cores: (1) the West Greenland Coastal Current (WGCC), transporting Greenland and Arctic meltwaters on the shelf; (2) the West Greenland Current (WGC), which advects warm, saline Atlantic-origin water at depth, meltwaters at the surface, and newly-ventilated Labrador Sea Water (LSW); and (3) the Deep Western Boundary Current, which carries dense overflow waters ventilated in the Nordic Seas. The seasonal presence of the LSW and Atlantic-origin water are dictated by air-sea buoyancy forcing, while the seasonality of the WGCC is governed by remote wind forcing and the propagation of coastally trapped waves from East Greenland. Using mooring data and hydrographic surveys, we demonstrate mid-depth intensified cyclones generated at Denmark Strait are found offshore of the WGC and enhance the overflow water transport at synoptic timescales. Using mooring, hydrographic, and satellite data, we demonstrate that the WGC undergoes extensive meandering due to baroclinic instability that is enhanced in winter due to LSW formation adjacent to the current. This leads to the production of small-scale, anticyclonic eddies that can account for the entirety of wintertime heat loss within the Labrador Sea. The meanders are shown to trigger the formation of Irminger Rings downstream. Using mooring, hydrographic, atmospheric, and Lagrangian data, and a mixing model, we find that strong atmospheric storms known as forward tip jets cause upwelling at the shelfbreak that triggers offshore export of freshwater. This freshwater flux can explain the observed lack of ventilation in the eastern Labrador Sea. Together, this thesis documents previously unobserved interannual, seasonal, and synoptic-scale variability and dynamics within the West Greenland boundary current system that must be accounted for in future modeling.


2022 ◽  
Author(s):  
Taavi Liblik ◽  
Germo Väli ◽  
Kai Salm ◽  
Jaan Laanemets ◽  
Madis-Jaak Lilover ◽  
...  

Abstract. Circulation plays an essential role in the creation of physical and biogeochemical fluxes in the Baltic Sea. The main aim of the work was to study the quasi-steady circulation patterns under prevailing forcing conditions. Six months of continuous vertical profiling and fixed-point measurements of currents, two monthly underwater glider surveys, and numerical modelling were applied in the central Baltic Sea. The vertical structure of currents was strongly linked to the location of the two pycnoclines: the seasonal thermocline and the halocline. The vertical movements of pycnoclines and velocity shear maxima were synchronous. The quasi-steady circulation patterns were in geostrophic balance and high-persistent. The persistent patterns included circulation features such as upwelling, downwelling, boundary current, and sub-halocline gravity current. The patterns had a prevailing zonal scale of 5–60 km and considerably higher magnitude and different direction than the long-term mean circulation pattern. Northward (southward) geostrophic boundary current in the upper layer was observed along the eastern coast of the central Baltic in the case of southwesterly (northerly) wind. The geostrophic current at the boundary was often a consequence of wind-driven, across-shore advection. The sub-halocline quasi-permanent gravity current with a width of 10–30 km from the Gotland Deep to the north over the narrow sill separating the Farö Deep and Northern Deep was detected in the simulation, and it was confirmed by an Argo float trajectory. According to the simulation, a strong flow, mostly to the north, with a zonal scale of 5 km occurred at the sill. This current is an important deeper limb of the overturning circulation of the Baltic Sea. The current is stronger with northerly winds and restricted by the southwesterly winds. The circulation regime has an annual cycle due to seasonality in the forcing. Boundary currents are stronger and more frequently northward during the winter period. The sub-halocline current towards the north is strongest in March–May and weakest in November–December.


2021 ◽  
Author(s):  
Carl Wunsch

Abstract. In sequential estimation methods often used in general climate or oceanic calculations of the state and of forecasts, observations act mathematically and statistically as forcings as is obvious in the innovation form of the equations. For purposes of calculating changes in important functions of state variables such as total mass and energy, or in volumetric current transports, results are sensitive to mis-representation of a large variety of parameters including initial conditions, prior uncertainty covariances, and systematic and random errors in observations. Errors are both stochastic and systematic, with the latter, as usual, being the most intractable. Here some of the consequences of such errors are first analyzed in the context of a simplified mass-spring oscillator system exhibiting many of the issues of far more complicated realistic problems. The same methods are then applied to a more geophysical barotropic Rossby wave plus western boundary current system. The overall message is that convincing trend and other time-dependent determinations in "reanalyis" like estimates requires a full understanding of both models and observations.


Author(s):  
Harry L. Bryden

Continuous observations of ocean circulation at 26°N in the subtropical Atlantic Ocean have been made since April 2004 to quantify the strength and variability in the Atlantic Meridional overturning circulation (AMOC), in which warm, upper waters flow northward and colder deep waters below 1100 m depth return southward. The principal components of the AMOC are northward western boundary current transport in the Gulf Stream and Antilles Current, northward surface Ekman transport and southward thermocline recirculation, all of which are generally considered to be part of the wind-driven circulation. Southward flowing deep waters below 1100 m depth are usually considered to represent the buoyancy-driven circulation. We argue that the Gulf Stream is partially wind-driven but also partially buoyancy-driven as it returns upper waters upwelled in the global ocean back to water mass formation regions in the northern Atlantic. Seasonal to interannual variations in the circulation at 26°N are principally wind-driven. Variability in the buoyancy-driven circulation occurred in a sharp reduction in 2009 in the southward flow of Lower North Atlantic Deep Water when its transport decreased by 30% from pre-2009 values. Over the 14-year observational period from 2004 to 2018, the AMOC declined by 2.4 Sv from 18.3 to 15.9 Sv.


2021 ◽  
pp. 1-30

Abstract Western Boundary Current (WBC) extensions such as the East Australian Current (EAC) southern extension are warming 2-3 times faster than the global average. However, there are nuances in the spatial and temporal variability of the warming that are not well resolved in climate models. In addition, the physical drivers of ocean heat content (OHC) extremes are not well understood. Here, using a high-resolution ocean model run for multiple decades, we show nonuniform warming trends in OHC in the EAC, with strong positive trends in the southern extension region (~36°S-38°S) but negative OHC trends equatorward of 33°S. The OHC variability in the EAC is associated with the formation of anticyclonic eddies, which is modulated by transport ~880 km upstream (EAC-mode) and the westward propagation of Rossby waves (Eddy-mode). Diagnosing the drivers of temperature extremes has implications for predictability both in the EAC and in WBCs more broadly, where ocean warming is already having considerable ecological impacts.


Author(s):  
Ahmad Fehmi Dilmahamod ◽  
Johannes Karstensen ◽  
Heiner Dietze ◽  
Ulrike Löptien ◽  
Katja Fennel

AbstractThe physical processes driving the genesis of surface- and subsurface-intensified cyclonic and anticyclonic eddies originating from the coastal current system of the Mauritanian Upwelling Region are investigated using a high-resolution (~1.5 km) configuration of GFDL’s Modular Ocean Model. Estimating an energy budget for the boundary current reveals a baroclinically unstable state during its intensification phase in boreal summer and which is driving eddy generation within the near-coastal region. The mean poleward coastal flow’s interaction with the sloping topography induces enhanced anticyclonic vorticity, with potential vorticity close to zero generated in the bottom boundary layer. Flow separation at sharp topographic bends intensifies the anticyclonic vorticity, and submesoscale structures of low PV coalesce to form anticyclonic vortices. A combination of offshore Ekman transport and horizontal advection determined the amount of SACW in an anticyclonic eddy. A vortex with a relatively dense and low PV core will form an anticyclonic mode-water eddy, which will subduct along isopycnals while propagating offshore and hence be shielded from surface buoyancy forcing. Less contribution of dense SACW promotes the generation of surface anticyclonic eddies as the core is composed of a lighter water mass, which causes the eddy to stay closer to the surface and hence be exposed to surface buoyancy forcing. Simulated cyclonic eddies are formed between the rotational flow of an offshore anticyclonic vortex and a poleward flowing boundary current, with eddy potential energy being the dominant source of eddy kinetic energy. All three types of eddies play a key role in the exchange between the Mauritanian Coastal currents system and the adjacent eastern boundary shadow zone region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sourav Sil ◽  
Avijit Gangopadhyay ◽  
Glen Gawarkiewicz ◽  
Saikat Pramanik

AbstractIn recent years, the seasonal patterns of Tropical Cyclones (TC) in the Bay of Bengal have been shifting. While tropical depressions have been common in March–May (spring), they typically have been relatively weaker than the TCs during October–December. Here we show that the spatial pattern of recent warming trends during the last two decades in the southwestern Bay has allowed for stronger springtime pre-monsoon cyclones such as Amphan (May 2020, Super Cyclone) and Fani (April–May 2019, Extremely Severe Cyclone). The tracks of the pre-monsoon cyclones shifted westward, concurrent with an increasing rate of warming. This shift allowed both Fani and Amphan tracks to cross the northeastward warm Western Boundary Current (WBC) and associated warm anti-cyclonic eddies, while the weaker Viyaru (April 2013, Cyclonic Storm) did not interact with the WBC. A quantitative model linking the available along-track heat potential to cyclone’s intensity is developed to understand the impact of the WBC on cyclone intensification. The influence of the warming WBC and associated anti-cyclonic eddies will likely result in much stronger springtime TCs becoming relatively common in the future.


Author(s):  
Tianyu Wang ◽  
Yan Du ◽  
Minyang Wang

AbstractAn Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean model, Phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory-derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s-1. The angles of the shear biases are pronounced in the low latitude oceans, ranging from -8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic circumpolar current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy-jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s-1, approximately 12% of the ambient velocity. It might have implications to map the mean mid-depth ocean currents from Argo trajectories, as well as understand the dynamics of eddy-jet interactions in the ocean.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1421-1435
Author(s):  
Vadim Sivkov ◽  
Ekaterina Bubnova

Abstract. A suspended particulate matter distribution against a hydrographical background was studied at the oceanographic transect across the equatorial Atlantic in the year 2000. An area of abnormally high suspended matter volume concentrations was found above the Sierra Leone Rise in the entire water column (eastern part of the transect). The suggested explanation for the anomaly is based on the ballast hypothesis whereby solid particles are incorporated as ballast into suspended biogenic aggregates, leading to increased velocities of sinking. This occurs within the Northwest African upwelling area, where the plankton exposed to the Saharan dust abundance form a significant number of aggregates, which are later transported equatorward via the Canary Current. An intermediate nepheloid layer associated with the Deep Western Boundary Current was recorded from the South American Slope at depths of 3200–3700 to 4300 m above the Para Abyssal Plain. Antarctic Bottom Water enriched in suspended matter was found mostly in the troughs at 40–41∘ W. It was detached from the bottom, coinciding with the core of the flow due to the bottom rise “dam” located up-stream. The grain size of particles along the entire transect has a polymodal distribution with 2–4 and 8–13 µm modes. The registered rise in percentage in some parts of the transect of the 7–21 µm sized particles suggests the presence of the well-known coarse mode (20–60 µm) formed by aggregation of transparent exopolymer particles (mucus).


Sign in / Sign up

Export Citation Format

Share Document