carbon utilization
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 125)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Lu ◽  
Honoka Aida ◽  
Masaomi Kurokawa ◽  
Feng Chen ◽  
Yang Xia ◽  
...  

AbstractThe morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form.


Author(s):  
Lavanya Raajaraam ◽  
Karthik Raman

Microbial production of chemicals is a more sustainable alternative to traditional chemical processes. However, the shift to bioprocess is usually accompanied by a drop in economic feasibility. Co-production of more than one chemical can improve the economy of bioprocesses, enhance carbon utilization and also ensure better exploitation of resources. While a number of tools exist for in silico metabolic engineering, there is a dearth of computational tools that can co-optimize the production of multiple metabolites. In this work, we propose co-FSEOF (co-production using Flux Scanning based on Enforced Objective Flux), an algorithm designed to identify intervention strategies to co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify all pairs of products that can be co-optimized with ease using a single intervention. Beyond this, it can also identify higher-order intervention strategies for a given set of metabolites. We have employed this tool on the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, and identified intervention targets that can co-optimize the production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic conditions were found to support the co-production of a higher number of metabolites when compared to aerobic conditions in both organisms. The proposed computational framework will enhance the ease of study of metabolite co-production and thereby aid the design of better bioprocesses.


2022 ◽  
Vol 113 ◽  
pp. 103533
Author(s):  
Jaisree Iyer ◽  
Greg Lackey ◽  
Laura Edvardsen ◽  
Andrew Bean ◽  
Susan A. Carroll ◽  
...  

2021 ◽  
Author(s):  
En Shi ◽  
Xinyu Wang ◽  
Miao Zhang ◽  
Xin Wang ◽  
Jianchun Gao ◽  
...  

Abstract Sewage sludge is carbonaceous organic material and an inevitable by-product of biological wastewater treatment process. The traditional sludge disposal routes may cause serious pollution risks, e. g. large amounts of carbon emissions. Molten salt synthesis (MSS) method could complete the carbonization and activation two processes within a single-step, and the complexity of chemical activation process could be significantly reduced. In this work, sludge derived activated carbon (SDAC) was prepared by MSS method with ZnCl2 . The mass ratio of ZnCl2 to sludge had a significant effect on both the physicochemical properties and surface chemistry of SDAC. As the mass ratio of ZnCl2 to sludge was 1, the maximum specific surface area of SDAC was 549.72 m2/g. The maximum adsorbing capacity of methylene blue (MB) and CO2 were 0.0786 and 0.0575 mg/mg(SDAC), respectively. The highest yield and carbon utilization potential of SDAC were 517.87 mg(SDAC)/g(sludge) and 178.56 mg(carbon)/g(sludge), respectively. According to carbon mass balance, the total carbon mass in SDAC adsorbed MB and CO2 can be achieved to 203.00 and 186.68 mg(carbon)/g(sludge), respectively. It was suggested that MSS method can be used to reduce carbon emissions and improve carbon adsorption during SDAC preparation.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 94
Author(s):  
Sang-Rak Sim ◽  
Dong-Woo Ryu

To prevent drastic climate change due to global warming, it is necessary to transition to a carbon-neutral society by reducing greenhouse gas emissions in all industrial sectors. This study aims to prepare measures to reduce the greenhouse gas in the cement industry, which is a large source of greenhouse gas emissions. The research uses supercritical CO2 carbonation to develop a carbon utilization fixation technology that uses concrete slurry water generated via concrete production as a new CO2 fixation source. Experiments were conducted using this concrete slurry water and supernatant water under different conditions of temperature (40 and 80 °C), pressure (100 and 150 bar), and reaction time (10 and 30 min). The results showed that reaction for 10 min was sufficient for complete carbonation at a sludge solids content of 5%. However, reaction products of supernatant water could not be identified due to the presence of Ca(HCO3)2 as an aqueous solution, warranting further research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261382
Author(s):  
Noorfatin Jihan Zulkefli ◽  
Cindy Shuan Ju Teh ◽  
Vanitha Mariappan ◽  
Soo Tein Ngoi ◽  
Jamuna Vadivelu ◽  
...  

Burkholderia pseudomallei (B. pseudomallei) is an intracellular pathogen that causes melioidosis, a life-threatening infection in humans. The bacterium is able to form small colony variants (SCVs) as part of the adaptive features in response to environmental stress. In this study, we characterize the genomic characteristics, antimicrobial resistance (AMR), and metabolic phenotypes of B. pseudomallei SCV and wild type (WT) strains. Whole-genome sequence analysis was performed to characterize the genomic features of two SCVs (CS and OS) and their respective parental WT strains (CB and OB). Phylogenetic relationship between the four draft genomes in this study and 19 publicly available genomes from various countries was determined. The four draft genomes showed a close phylogenetic relationship with other genomes from Southeast Asia. Broth microdilution and phenotype microarray were conducted to determine the AMR profiles and metabolic features (carbon utilization, osmolytes sensitivity, and pH conditions) of all strains. The SCV strains exhibited identical AMR phenotype with their parental WT strains. A limited number of AMR-conferring genes were identified in the B. pseudomallei genomes. The SCVs and their respective parental WT strains generally shared similar carbon-utilization profiles, except for D,L-carnitine (CS), g-hydroxybutyric acid (OS), and succinamic acid (OS) which were utilized by the SCVs only. No difference was observed in the osmolytes sensitivity of all strains. In comparison, WT strains were more resistant to alkaline condition, while SCVs showed variable growth responses at higher acidity. Overall, the genomes of the colony morphology variants of B. pseudomallei were largely identical, and the phenotypic variations observed among the different morphotypes were strain-specific.


2021 ◽  
Vol 11 (24) ◽  
pp. 11931
Author(s):  
Pratham Arora ◽  
Ronald R. Chance ◽  
Howard Hendrix ◽  
Matthew J. Realff ◽  
Valerie M. Thomas ◽  
...  

Refined bio-crude production from hydrothermal liquefaction of algae holds the potential to replace fossil-based conventional liquid fuels. The microalgae act as natural carbon sequestrators by consuming CO2. However, this absorbed CO2 is released to the atmosphere during the combustion of the bio-crude. Thus, the life-cycle greenhouse gas (GHG) emissions of refined bio-crude are linked to the production and supply of the materials involved and the process energy demands. One prominent raw material is CO2, which is the main source of carbon for algae and the subsequent products. The emissions associated with the supply of CO2 can have a considerable impact on the sustainability of the algae-based refined bio-crude production process. Furthermore, the diurnal algae growth cycle complicates the CO2 supply scenarios. Traditionally, studies have relied on CO2 supplied from existing power plants. However, there is potential for building natural gas or biomass-based power plants with the primary aim of supplying CO2 to the biorefinery. Alternately, a direct air capture (DAC) process can extract CO2 directly from the air. The life-cycle GHG emissions associated with the production of refined bio-crude through hydrothermal liquefaction of algae are presented in this study. Different CO2 supply scenarios, including existing fossil fuel power plants and purpose-built CO2 sources, are compared. The integration of the CO2 sources with the algal biorefinery is also presented. The CO2 supply from biomass-based power plants has the highest potential for GHG reduction, with a GHG footprint of −57 g CO2 eq./MJ refined bio-crude. The CO2 supply from the DAC process has a GHG footprint of 49 CO2 eq./MJ refined bio-crude, which is very similar to the scenario that considers the supply of CO2 from an existing conventional natural gas-based plant and takes credit for the carbon utilization.


2021 ◽  
pp. 251484862110614
Author(s):  
Holly Jean Buck

Can fossil-based fuels become carbon neutral or carbon negative? The oil and gas industry is facing pressure to decarbonize, and new technologies are allowing companies and experts to imagine lower-carbon fossil fuels as part of a circular carbon economy. This paper draws on interviews with experts, ethnographic observations at carbontech and carbon management events, and interviews with members of the public along a suggested CO2 pipeline route from Iowa to Texas, to explore: What is driving the sociotechnical imaginary of circular fossil carbon among experts, and what are its prospects? How do people living in the landscapes that are expected to provide carbon utilization and removal services understand their desirability and workability? First, the paper examines a contradiction in views of carbon professionals: while experts understand the scale of infrastructure, energy, and capital required to build a circular carbon economy, they face constraints in advocating for policies commensurate with this scale, though they have developed strategies for managing this disconnect. Second, the paper describes views from the land in the central US, surfacing questions about the sustainability of new technologies, the prospect of carbon dioxide pipelines, and the way circular carbon industries could intersect trends of decline in small rural towns. Experts often fail to consider local priorities and expertise, and people in working landscapes may not see the priorities and plans of experts, constituting a “double unseeing.” Robust energy democracy involves not just resistance to dominant imaginaries of circular carbon, but articulation of alternatives. New forms of expert and community collaboration will be key to transcending this double unseeing and furthering energy democracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Chang ◽  
Ellen E. Vaughan ◽  
Carmen Gu Liu ◽  
Joseph W. Jelinski ◽  
Austen L. Terwilliger ◽  
...  

AbstractThe genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the “culinary preferences” of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.


Sign in / Sign up

Export Citation Format

Share Document