dose length product
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 93)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Yusuke Inoue ◽  
Yuka Yonekura ◽  
Kazunori Nagahara ◽  
Ayuka Uehara ◽  
Hideki Ikuma

Abstract For radiation dose assessement of computed tomography (CT), effective dose (ED) is often estimated by multiplying the dose-length product (DLP), provided automatically by the CT scanner, by a conversion factor. We investigated such conversion in CT venography of the lower extremities performed in conjunction with CT pulmonary angiography. The study subjects consisted of eight groups imaged using different scanners and different imaging conditions (five and three groups for the GE and Siemens scanners, respectively). Each group included 10 men and 10 women. The scan range was divided into four anatomical regions (trunk, proximal thigh, knee and distal leg), and DLP was calculated for each region (regional DLP). Regional DLP was multiplied by a conversion factor for the respective region, to convert it to ED. The sum of the ED values for the four regions was obtained as standard ED. Additionally, the sum of the four regional DLP values, an approximate of the scanner-derived DLP, was multiplied by the conversion factor for the trunk (0.015 mSv/mGy/cm), as a simplified method to obtain ED. When using the simplified method, ED was overestimated by 32.3%−70.2% and 56.5%−66.2% for the GE and Siemens scanners, respectively. The degree of overestimation was positively and closely correlated with the contribution of the middle and distal portions of the lower extremities to total radiation exposure. ED/DLP averaged within each group, corresponding to the conversion factor, was 0.0089−0.0114 and 0.0091−0.0096 mSv/mGy/cm for the GE and Siemens scanners, respectively. In CT venography of the lower extremities, ED is greatly overestimated by multiplying the scanner-derived DLP by the conversion factor for the trunk. The degree of overestimation varies widely depending on the imaging conditions. It is recommended to divide the scan range and calculate ED as a sum of regional ED values.


2022 ◽  
Author(s):  
M. El Mansouri ◽  
M. Talbi ◽  
A. Choukri ◽  
O. Nhila ◽  
M. Aabid

In Morocco, the radiation doses received by adult patients are increasing due to the number of CT examinations performed and the larger number of computed tomography (CT) scanners installed. The aim of this study was to evaluate the radiation doses received by patients for the most common adult CT examinations in order to establish local diagnostic reference levels (DRLs). Data from 1016 adult patients were collected during 3 months from four Moroccan hospitals. Dose length product (DLP) and volumetric computed tomography dose index (CTDIvol) were evaluated by determining the 75th percentile as diagnostic reference levels for the most common examinations including head, chest and abdomen. The DRL for each examination was compared with other studies. The established DRLs in Morocco in terms of CTDIvol were 57.4, 12.3 and 10.9 for CT examinations of the head, chest, abdomen, respectively. For DLP, they were 1020, 632 and 714, respectively. These established DRLs for CTDIvol were almost similar to the UK DRLs at all examinations, higher than the Egyptian DRLs and lower than the Japanese DRLs at the head CT examination, lower than the DRLs from Egypt and Japan at the CT abdomen examination. In terms of DLP, the DRLs were higher than those of the British studies, lower than those of the Egyptian and Japanese studies at the head CT examination were higher at chest CT and lower at abdominal CT than those of all selected studies. The higher level of established DRLs in our study demonstrates the requirement of an optimization process while keeping a good image quality for a reliable diagnosis.


Author(s):  
Monica Bernardo ◽  
Fatemeh Homayounieh ◽  
Maria Cristina Rodel Cuter ◽  
Luiz Mário Bellegard ◽  
Homero Medeiros Oliveira Junior ◽  
...  

Abstract We assessed variations in chest CT usage, radiation dose and image quality in COVID-19 pneumonia. Our study included all chest CT exams performed in 533 patients from 6 healthcare sites from Brazil. We recorded patients’ age, gender and body weight and the information number of CT exams per patient, scan parameters and radiation doses (volume CT dose index—CTDIvol and dose length product—DLP). Six radiologists assessed all chest CT exams for the type of pulmonary findings and classified CT appearance of COVID-19 pneumonia as typical, indeterminate, atypical or negative. In addition, each CT was assessed for diagnostic quality (optimal or suboptimal) and presence of artefacts. Artefacts were frequent (367/841), often related to respiratory motion (344/367 chest CT exams with artefacts) and resulted in suboptimal evaluation in mid-to-lower lungs (176/344) or the entire lung (31/344). There were substantial differences in CT usage, patient weight, CTDIvol and DLP across the participating sites.


Author(s):  
T Amalaraj ◽  
Duminda Satharasinghe ◽  
Aruna Pallewatte ◽  
Jeyasingam Jeyasugiththan

Abstract The main purpose of this study was to establish the national diagnostic reference levels (NDRLs) for common CT procedures for the first time in Sri Lanka. Patient morphometric, exposure parameters, and dose data such as volume CT dose index (CTDIvol) and dose length product (DLP) were collected from 5666 patients who underwent 22 procedure types. The extreme dose values were filteblue before analysis to ensure that the data comes from standard size patients. The median of the dose distribution was calculated for each institution, and the third quartile value of the median distribution was consideblue as the NDRL. Based on the inclusion and exclusion criteria, 4592 patients data from 17 procedure types were consideblue for NDRL establishment covering 41\% of the country's total CT machines. The proposed NDRLs based on CTDIvol and DLP for non-contrast (NC) head:82.2 mGy/1556 mGy.cm, contrast-enhanced (CE) head: 82.2 mGy/1546 mGy.cm, chest-NC:7.4 mGy/350 mGy.cm, chest-CE:8.3 mGy/464 mGy.cm, abdomen NC:10.5 mGy/721 mGy.cm, abdomen arterial (A) phase:13.4 mGy/398 mGy.cm, abdomen venous (V) phase:10.8 mGy/460 mGy.cm, abdomen delay (D) phase:12.6 mGy/487 mGy.cm, sinus NC:30.2 mGy/452 mGy.cm, lumbar spine--NC:24.1 mGy/1123 mGy.cm, neck-NC:27.5 mGy/670 mGy.cm, high resolutions CT (HRCT) of chest:10.3 mGy/341 mGy.cm, kidney, ureter and bladder (KUB) NC:19.4 mGy/929 mGy.cm, chest to pelvis (CAP) NC:10.8 mGy/801 mGy.cm, CAP-A:10.4 mGy/384 mGy.cm, CAP-V:10.5 mGy/534 mGy.cm and CAP-D:16.8 mGy/652 mGy.cm. Although the proposed NDRLs are comparable with other countries, the observed broad dose distributions between the CT machines within the country indicate that dose optimisation strategies for Sri Lanka should be implemented for most of the CT facilities.


Author(s):  
Philip W. Chu ◽  
Sophronia Yu ◽  
Yifei Wang ◽  
J. Anthony Seibert ◽  
Luisa F. Cervantes ◽  
...  

Abstract Background Radiation dose metrics vary by the calibration reference phantom used to report doses. By convention, 16-cm diameter cylindrical polymethyl-methacyrlate phantoms are used for head imaging and 32-cm diameter phantoms are used for body imaging in adults. Actual usage patterns in children remain under-documented. Objective This study uses the University of California San Francisco International CT Dose Registry to describe phantom selection in children by patient age, body region and scanner manufacturer, and the consequent impact on radiation doses. Materials and methods For 106,837 pediatric computed tomography (CT) exams collected between Jan. 1, 2015, and Nov. 2, 2020, in children up to 17 years of age from 118 hospitals and imaging facilities, we describe reference phantom use patterns by body region, age and manufacturer, and median and 75th-percentile dose–length product (DLP) and volume CT dose index (CTDIvol) doses when using 16-cm vs. 32-cm phantoms. Results There was relatively consistent phantom selection by body region. Overall, 98.0% of brain and skull examinations referenced 16-cm phantoms, and 95.7% of chest, 94.4% of abdomen and 100% of cervical-spine examinations referenced 32-cm phantoms. Only GE deviated from this practice, reporting chest and abdomen scans using 16-cm phantoms with some frequency in children up to 10 years of age. DLP and CTDIvol values from 16-cm phantom-referenced scans were 2–3 times higher than 32-cm phantom-referenced scans. Conclusion Reference phantom selection is highly consistent, with a small but significant number of abdomen and chest scans (~5%) using 16-cm phantoms in younger children, which produces DLP values approximately twice as high as exams referenced to 32-cm phantoms


2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259772
Author(s):  
Li-Guo Chen ◽  
Ping-An Wu ◽  
Hsing-Yang Tu ◽  
Ming-Huei Sheu ◽  
Li-Chuan Huang

Exposure to ionizing radiation can cause cancer, especially in children. In computed tomography (CT), a trade-off exists between the radiation dose and image quality. Few studies have investigated the effect of dose reduction on image quality in pediatric neck CT. We aimed to assess the effect of peak kilovoltage on the radiation dose and image quality in pediatric neck multidetector-row CT. Measurements were made using three phantoms representative of children aged 1, 5, and 10 years, with tube voltages of 80, 100, and 120 kilovoltage peak (kVp); tube current of 10, 40, 80, 120, 150, 200, and 250 mA; and exposure time = 0.5 s (pitch, 0.984:1). Radiation dose estimates were derived from the dose-length product with a 64-multidetector-row CT scanner. Images obtained from the control protocol (120 kVp) were compared with the 80- and 100-kVp protocols. The effective dose (ED) was determined for each protocol and compared with the 120-kVp protocol. Quantitative analysis entailed noise measurements by recording the standard deviation of attenuation for a circular 1-cm2 region of interest placed on homogeneous soft tissue structures in the phantom. The mean noise of the various kVp protocols was compared using the unpaired Student t-test. Reduction of ED was 37.58% and 68.58% for neck CT with 100 kVp and 80 kVp, respectively. The image noise level increased with the decrease in peak kilovoltage. Noise values were higher at 80 kVp at all neck levels, but did not increase at 100 kVp, compared to 120 kVp in the three phantoms. The measured noise difference was the greatest at 80 kVp (absolute increases<2.5 HU). The subjective image quality did not differ among the protocols. Thus, reducing voltage from 120 to 80 kVp for neck CT may achieve ED reduction of 68.58%, without compromising image quality.


2021 ◽  
Vol 12 (6) ◽  
pp. 700-705
Author(s):  
Mariana De Oliveira Nunes ◽  
David M. Overman ◽  
Susan A. Casey ◽  
Dawn R. Witt ◽  
Christian W. Schmidt ◽  
...  

Background Patients with single ventricle (SV) congenital heart disease (CHD) undergo several interventions in the first years of life. Advanced diagnostics are required for interstage assessment of anatomy, but are associated with significant diagnostic risk. We sought to evaluate image quality, risk, and accuracy of cardiac computed tomography (CCT) for evaluation of anatomy prior to superior cavopulmonary connection (SCPC) compared to surgical findings across 2 institutions. Methods A retrospective evaluation of image quality, risk, and accuracy of pre-SCPC CCT was performed at 2 institutions between January 1, 2010 and September 30, 2016. Results CCT was performed in 90 SV CHD patients with a median age of 4.03 months (interquartile range [IQR] 3.36, 5.33) prior to SCPC. Image quality was optimal (84%) or good (16%) in all patients, without significant discrepancy compared to surgical findings. 7 patients (8%) required interventional cardiac catheterization subsequent to CCT and before surgical intervention. 49% of scans were performed without sedation, 43% of scans were performed with mild to moderate sedation, and 8% of scans were performed with general anesthesia. The median total procedural dose-length product (DLP) was 18 (IQR 14, 26) mGy*cm, estimating an age adjusted radiation dose of 1.4 millisievert (mSv). One minor (1%) adverse event was reported within 24 h of the CCT. Surgical complications were unrelated to the presurgical findings. Conclusions CCT for pre-SCPC evaluation is safe, with excellent accuracy for anatomy at the time of surgical intervention across 2 institutions. In select patients, noninvasive evaluation with CCT may be indicated.


2021 ◽  
Author(s):  
Mohammad AbuQbeitah ◽  
Mustafa Demir ◽  
Kerim Sönmezoğlu ◽  
Haluk Sayman ◽  
Levent Kabasakal ◽  
...  

Abstract Purpose To assess frequency, clinical indications, and cumulative effective dose (CED) of patients undergoing multiple 18F-FDG PET/CT imaging. Methods Retrospective analysis of 18F-FDG PET/CT scans performed at a University hospital for 11 years was done. Effective dose was computed from activity administered and dose-length-product. Results A total of 55,424 18F-FDG PET/CT scans were performed in 32,658 patients. The average injected activity was 421 MBq and median 417 MBq. 24.2% of the patients were scanned 2-5 times in a year, 16.7% of them being unique patients (not counted as separate patient in different years). The maximum PET/CT scans in a year was five. 23571 (72.2 %) patients underwent a single 18F-FDG PET/CT scan, while 9087 (27.8%) unique patients underwent 2 - 23 scans during 11 years. 82% of the scanned patients had malignant disease, 2.4% among the patients with ≥ 2 18F-FDG PET/CT scans in a year were with non-malignant indications. 1.4% of patients received CED ≥100 mSv in one year from multiple 18F-FDG PET/CT scans and 0.8% of them received ≥ 100 mSv in a year more than one time, the CED of 27.8% (9087 patients) who underwent 2 to 23 18F-FDG PET/CT scans over 11-years ranged from 38 to 575 mSv (median: 271 mSv). Conclusion This first and largest ever study covering analysis of 11-years’ data of 18F-FDG PET/CT patients showed that a sizeable number of patients, largely (82%) with malignant disease undergo recurrent imaging during one year and non-ignorable fraction exceed 100 mSv in one year.


Author(s):  
Denise Bos ◽  
Sophronia Yu ◽  
Jason Luong ◽  
Philip Chu ◽  
Yifei Wang ◽  
...  

Abstract Ob jectives The European Society of Radiology identified 10 common indications for computed tomography (CT) as part of the European Study on Clinical Diagnostic Reference Levels (DRLs, EUCLID), to help standardize radiation doses. The objective of this study is to generate DRLs and median doses for these indications using data from the UCSF CT International Dose Registry. Methods Standardized data on 3.7 million CTs in adults were collected between 2016 and 2019 from 161 institutions across seven countries (United States of America (US), Switzerland, Netherlands, Germany, UK, Israel, Japan). DRLs (75th percentile) and median doses for volumetric CT-dose index (CTDIvol) and dose-length product (DLP) were assessed for each EUCLID category (chronic sinusitis, stroke, cervical spine trauma, coronary calcium scoring, lung cancer, pulmonary embolism, coronary CT angiography, hepatocellular carcinoma (HCC), colic/abdominal pain, appendicitis), and US radiation doses were compared with European. Results The number of CT scans within EUCLID categories ranged from 8,933 (HCC) to over 1.2 million (stroke). There was greater variation in dose between categories than within categories (p < .001), and doses were significantly different between categories within anatomic areas. DRLs and median doses were assessed for all categories. DRLs were higher in the US for 9 of the 10 indications (except chronic sinusitis) than in Europe but with a significantly higher sample size in the US. Conclusions DRLs for CTDIvol and DLP for EUCLID clinical indications from diverse organizations were established and can contribute to dose optimization. These values were usually significantly higher in the US than in Europe. Key Points • Registry data were used to create benchmarks for 10 common indications for CT identified by the European Society of Radiology. • Observed US radiation doses were higher than European for 9 of 10 indications (except chronic sinusitis). • The presented diagnostic reference levels and median doses highlight potentially unnecessary variation in radiation dose.


Sign in / Sign up

Export Citation Format

Share Document