tubule formation
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 65)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 293-298
Author(s):  
Wenxiu Qian ◽  
Guomin Li

Angiogenesis is a prerequisite for tumor development and metastasis. Emerging evidence shows that tumor-derived extracellular vesicles (EVs) are an important component of tumor microenvironment, which participate in the communication between normal cells and tumor cells. In this study, we aimed to investigate the role of EVs derived from esophageal squamous cell carcinoma (ESCC) on tumor angiogenesis. We found that ESCC cell-derived EVs promoted the proliferation, migration, and tubule formation of human umbilical vein endothelial cells in vitro, and enhanced angiogenesis and tumor growth in vivo. Our results suggest that ESCC cell-derived EVs could promote angio-genesis and tumor growth, which also indicated the application of EVs as a valuable therapeutic strategy of ESCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junlan Zhou ◽  
Neha Singh ◽  
Chloe Monnier ◽  
William Marszalec ◽  
Li Gao ◽  
...  

BIN1 (amphyphysin-II) is a structural protein involved in T-tubule (TT) formation and phosphatidylinositol-4,5-bisphosphate (PIP2) is responsible for localization of BIN1 to sarcolemma. The goal of this study was to determine if PIP2-mediated targeting of BIN1 to sarcolemma is compromised during the development of heart failure (HF) and is responsible for TT remodeling. Immunohistochemistry showed co-localization of BIN1, Cav1.2, PIP2, and phospholipase-Cβ1 (PLCβ1) in TTs in normal rat and human ventricular myocytes. PIP2 levels were reduced in spontaneously hypertensive rats during HF progression compared to age-matched controls. A PIP Strip assay of two native mouse cardiac-specific isoforms of BIN1 including the longest (cardiac BIN1 #4) and shortest (cardiac BIN1 #1) isoforms as well human skeletal BIN1 showed that all bound PIP2. In addition, overexpression of all three BIN1 isoforms caused tubule formation in HL-1 cells. A triple-lysine motif in a short loop segment between two helices was mutated and replaced by negative charges which abolished tubule formation, suggesting a possible location for PIP2 interaction aside from known consensus binding sites. Pharmacological PIP2 depletion in rat ventricular myocytes caused TT loss and was associated with changes in Ca2+ release typically found in myocytes during HF, including a higher variability in release along the cell length and a slowing in rise time, time to peak, and decay time in treated myocytes. These results demonstrate that depletion of PIP2 can lead to TT disruption and suggest that PIP2 interaction with cardiac BIN1 is required for TT maintenance and function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tian-Tian Jiang ◽  
Chao-Fan Ji ◽  
Xiu-Ping Cheng ◽  
Shao-Fei Gu ◽  
Rui Wang ◽  
...  

A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.


Author(s):  
Pi En Chang ◽  
Shujin Li ◽  
Hyun-Yi Kim ◽  
Dong-Joon Lee ◽  
Yoon Jeong Choi ◽  
...  

Objectives: Mechanical stimuli are essential for the maintenance of periodontal ligament (PDL) homeostasis. Although there are several studies on atrophic changes in PDL due to occlusal hypofunction, the underlying mechanism is still unknown. Here, we aimed to explore the changes of gene expression in occlusal hypofunctional PDL and elucidate the related role in maintaining the PDL homeostasis.Methods: To investigate the transcriptomic difference between control and hypofunctional PDL tissue from patients, RNA sequencing was performed on 34 human teeth. The atrophic changes in PDL were evaluated by histological analysis. The effect of the Bardet-Biedl syndrome 7 (BBS7) knockdown was evaluated by the RT-qPCR, Western blot, wound healing, and tubule formation assay.Results: We detected that the expression of BBS7 was downregulated in occlusal hypofunctional PDL through RNA sequencing. Dynamic changes, including the number of periodontal ligament cells, alignment of collagen fibers, diameter of blood vessels, appearance of primary cilia, and torturous oxytalan fibers, were observed following occlusal hypofunction. Furthermore, Sonic hedgehog signaling (Shh) activity was closely associated with BBS7 expression in PDL cells. In addition, the cell migration and angiogenesis were also suppressed by BBS7 knockdown in vitro.Conclusion: We suggest that BBS7 plays an essential role in maintaining Shh signaling activity for PDL homeostasis.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1913
Author(s):  
Ahmed Elsaie ◽  
Renuka T. Menon ◽  
Amrit K. Shrestha ◽  
Sharada H. Gowda ◽  
Nidhy P. Varghese ◽  
...  

Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1–P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jie Zhou ◽  
Tianhong Wei ◽  
Zhiyou He

Abstract Background Adipose-derived mesenchymal stem cells (ADSCs) are an important focus in regenerative medicine. However, the biological function of ADSCs in the wound repair of diabetic foot ulcers (DFUs) remains unclear. This study aimed to determine the underlying mechanisms of ADSCs involved in the wound healing of DFUs. Methods The cell surface markers cluster of differentiation 34 (CD34), stromal cell antigen 1 (Stro-1), cluster of differentiation 90 (CD90) and cluster of differentiation 105 (CD105) on ADSCs were identified by flow cytometry. Oil Red O staining and Alizarin Red S staining were performed to identify the multipotential differentiation of ADSCs into adipocytes and bone. The levels of Methyltransferase-like 3 (METTL3), vascular endothelial growth factor C (VEGF-C) and insulin-like growth factor 2 binding protein 2 (IGF2BP2) were assessed by RT-qPCR. CCK-8, Transwell and tubule formation assays were conducted to assess lymphatic endothelial cell (LEC) viability, migration and tubule formation ability, respectively. RIP and RNA pulldown assays were conducted to assess the interaction between IGF2BP2 and VEGF-C. The levels of VEGF-C, VEGFR3, LYVE-1 and IGF2BP2 proteins were assessed by Western blotting. The levels of VEGF-C in LECs were measured by ELISA. Results Our findings illustrated that ADSCs accelerate LEC proliferation, migration and lymphangiogenesis via the METTL3 pathway and regulate VEGF-C expression via the METTL3/IGF2BP2-m6A pathway VEGF-C-mediated lymphangiogenesis via the METTL3/IGF2BP2-m6A pathway in DFU mice. Conclusion ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m6A modification to improve wound healing in DFUs, indicating that ADSCs may be regarded as a promising therapeutic strategy to promote wound healing in DFUs.


2021 ◽  
Author(s):  
Nitzan Gonen ◽  
Caroline Eozenou ◽  
Richard Mitter ◽  
Andreia Bernardo ◽  
Almira Chervova ◽  
...  

During embryonic development, mutually antagonistic signaling cascades determine the fate of the bipotential gonad towards a testicular or ovarian identity. Errors in this process result in human Disorders of Sex Development (DSDs), where there is discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in-vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells towards gonadal progenitors. Transcriptomic analysis reveals that the in-vitro-derived murine gonadal cells are equivalent to E11.5 in-vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete AMH, migrate and form tubular structures. The cells derived from a 46,XY DSD female hiPSCs, carrying a NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR/Cas9-mediated correction of the variant rescued the phenotype. This is a robust tool to understand mechanisms of sex-determination and model DSDs.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Harriet P. Lo ◽  
Ye-Wheen Lim ◽  
Zherui Xiong ◽  
Nick Martel ◽  
Charles Ferguson ◽  
...  

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule–associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012051
Author(s):  
P A S Nor Rahim ◽  
N Mustafa ◽  
H Yazid ◽  
T Xiao Jian ◽  
S Daud ◽  
...  

Abstract Breast cancer is the most silent killer among cancers nowadays. NHG system is widely accepted worldwide as a gold standard in providing the overall grade to breast cancer. One of the breast cancer features used in the NHG system is tubule formation. Assessment of tubule formation requires pathologist to identify tumour regions. However, colour variation on breast histopathology could influence tumour regions detection on breast histopathology images. Manual identification of tumour regions using microscope may also vary between pathologists. Thus, automatic segmentation is crucial to segment tumour regions. In this study, a simple approach of segmentation was proposed to segment tumour region on breast histopathology images. The proposed segmentation involved three stages: pre-processing, segmentation and post-processing. The proposed approach using GHE and median filter in the pre-processing stage; Otsu thresholding in the segmentation stage and; morphological operation and pixel removal in the post-processing stage was found able to segment the tumour region with average segmentation accuracy of 90.4 %.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S76-S76
Author(s):  
E Ibrahim ◽  
T Sheridan ◽  
S Mandavilli

Abstract Introduction/Objective Mesonephric-like carcinoma of the uterus is an increasingly recognized carcinoma with mesonephric differentiation, but without association with mesonephric remnants. We present a case of a 60-year-old woman presented with postmenopausal bleeding. Methods/Case Report Pelvic MRI showed possibly a cervical lobulated lesion (4.4cm) extending into the endocervical canal. Initial biopsy of this mass showed a spindle cell neoplasm raising possibility of an endometrial stromal sarcoma. On subsequent radical hysterectomy, there was a mass arising in the lower uterine segment (LUS) with circumferential cervical involvement. The tumor was comprised of sheets of epithelioid to spindle cells with scant cytoplasm and indistinct cell borders. Abundant mitotic figures and foci of necrosis were identified. Focal areas showed dense sclerosis with cords of cells, and only rare areas showed tubule formation with scant secretions. By immunohistochemistry (IHC), the tumor cells were positive for keratin AE1/AE3 (strong, diffuse), TTF-1, p63, p16, CD10 (with luminal accentuation); PAX8, desmin and caldesmon showed focal/rare positivity. Other markers were negative, including GATA3 (patchy, weak), ER and PR. Mismatch repair proteins were intact. Next-generation sequencing (NGS) revealed a KRAS mutation. Considering strong expression of epithelial markers, focal tubule formation with positive TTF-1 and negative GATA-3 labeling, and absence of identified mesonephric remnants, the tumor was classified as a high-grade mesonephric-like carcinoma of the uterus (LUS). Pelvic lymph nodes were negative (pT2 N0), and the patient is receiving cisplatin and external beam radiation. Results (if a Case Study enter NA) NA Conclusion MLCA with a prominent spindled/sarcomatoid component can be difficult to diagnose. Ancillary testing including a broad IHC panel with TTF-1, GATA-3 and NGS may be useful to aid in the diagnosis.


Sign in / Sign up

Export Citation Format

Share Document