dark mode
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 65)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Seonta Kim ◽  
Dongpyo Hong ◽  
matlabjon Sattorov ◽  
Seonmyeong Kim ◽  
Young Joon Yoo ◽  
...  
Keyword(s):  

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Qifa Wang ◽  
Chenyang Li ◽  
Liping Hou ◽  
Hanmou Zhang ◽  
Xuetao Gan ◽  
...  

Abstract Plasmonic radial breathing mode (RBM), featured with radially oscillating charge density, arises from the surface plasmon waves confined in the flat nanoparticles. The zero net dipole moment endows the RBM with an extremely low radiation yet a remarkable intense local field. On the other hand, owing to the dark mode nature, the RBMs routinely escape from the optical measurements, severely preventing their applications in optoelectronics and nanophotonics. Here, we experimentally demonstrate the existence of RBM in a hexagonal Au nanoplate-on-mirror nanocavity using a far-field linear-polarized light source. The polarization-resolved scattering measurements cooperated with the full-wave simulations elucidate that the RBM originates from the standing plasmon waves residing in the Au nanoplate. Further numerical analysis shows the RBM possesses the remarkable capability of local field enhancement over the other dark modes in the same nanocavity. Moreover, the RBM is sensitive to the gap and nanoplate size of the nanocavity, providing a straightforward way to tailor the wavelength of RBM from the visible to near-infrared region. Our approach provides a facile optical path to access to the plasmonic RBMs and may open up a new route to explore the intriguing applications of RBM, including surface-enhanced Raman scattering, enhanced nonlinear effects, nanolasers, biological and chemical sensing.


2022 ◽  
Vol 12 (1) ◽  
pp. 420
Author(s):  
Chun-Te Lee ◽  
Liang-Bi Chen ◽  
Huan-Mei Chu ◽  
Che-Jen Hsieh ◽  
Wei-Chieh Liang

Reducing residential and industrial electricity consumption has been a goal of governments around the world. Lighting sources account for a large portion of the whole energy/power consumption. Unfortunately, most of the existing installed lighting systems are ancient and have poor energy efficiency. Today, many manufacturers have introduced light-controlling systems into the current market. However, existing light controlling systems may not be successfully applied to buildings, streets, and industrial buildings due to high costs and difficult installation and maintenance. To combat this issue, this article presents an easy-to-install, low-cost, Master-Slave intelligent LED light-controlling system based on Internet of Things (IoT) techniques. The benefit of using the proposed system is that the brightness of the LED lights in the same zone can be changed simultaneously to save in energy consumption. Furthermore, the parameters of the LED lights can be directly set. Moreover, the related data are collected and uploaded to a cloud platform. In this article, we use 15 W T8 LED tubes (non-induction lamps) as a case study. When the proposed system is installed in a zone with few people, the energy-saving rate is as high as 90%. Furthermore, when 12 people pass by a zone within one hour, its energy-saving rate can reach 81%. Therefore, the advantages of using the proposed system include: (1) the original lamp holder can be retained; (2) no wiring is required; and (3) no server is set up. Moreover, the goal of energy saving can also be achieved. As a result, the proposed system changes the full-dark mode of the available sensor lamp to the low power low-light mode for standby. Further, it makes the sensor lamps in the same zone brighten or low-light way simultaneously, which can quickly complete large-scale energy-saving and convenient control functions of intelligent LED lighting controlling system.


2022 ◽  
pp. 127927
Author(s):  
Qi Zhu ◽  
Yuting Chen ◽  
Jianhua Huang ◽  
Zhong Huang ◽  
Wei Du ◽  
...  

2021 ◽  
pp. 113336
Author(s):  
Arkadiy Blank ◽  
Natalia Suhareva ◽  
Nikita Zuev
Keyword(s):  

Author(s):  
Hui Xu ◽  
Xiaojing Wang ◽  
Zhiquan Chen ◽  
Xuelei Li ◽  
Longhui He ◽  
...  

Abstract A very simple optical tunable device, which can realize multiple functions of frequency selection, reflection and slow light, is presented at the investigation. The proposed device is constructed by a periodic grating-like structure. There are two dielectrics (graphene and silicon) in a period of the equivalent grating. The incident light will strongly resonate with the graphene of electrostatic doping, forming an evanescent wave propagating along the surface of graphene, and this phenomenon is the surface plasmon. Under constructive interference of the polaritons, a unique plasmonic induced transparency phenomenon will be achieved. The induced transparency produced by this device can be well theoretically fitted by the bright and dark mode of optical equivalent cavity which can be called coupled mode theory (CMT). This theory can well analyze the influence of various modes and various losses between the function of this device. The device can use gate voltages for electrostatic doping in order to change the graphene carrier concentration and tune the optical performance of the device. Moreover, the length of the device in y-direction is will be much larger than the length of single cycle, providing some basis for realizing the fast tunable function and laying a foundation for the integration. Through a simulation and calculation, we can find that the group index and group delay of this device are as high as 515 and 0.257 picoseconds (ps) respectively, so it can provide a good construction idea for the slow light device. The proposed grating-like metamaterial structure can provide certain simulation and theoretical help for the optical tunable reflectors, absorbers, and slow light devices.


2021 ◽  
Author(s):  
Anne-Laure Fehrembach ◽  
François Renaud ◽  
Evgeny Popov ◽  
Hervé Tortel ◽  
Antoine Monmayrant ◽  
...  

Author(s):  
Soumyajyoti Mallick ◽  
Nitin Chourasia ◽  
Rakesh Singh ◽  
Dibakar Roy Chowdhury

Abstract Bright mode resonances are not well-acknowledged for inducing mode hybridizations. However, we demonstrate multiple bright resonators coupled through electromagnetic fields can induce resonance mode hybridizations. Although one of the hybridized modes shows parallel magnetic moments but the other mode demonstrates anti-parallel magnetic moments leading to magnetic toroidal resonances. Normally excitation of toroidal modes demands complex structures and/or bright-dark mode interactions. However, in this work, we employ solely bright resonators to excite toroidal modes. Unlike bright-dark mode coupling, exclusive bright mode resonance coupling enables larger free space energy merging into the metasystem leading to stronger energy confinement in the metasurface array.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2420
Author(s):  
Xunjun He ◽  
Chenguang Sun ◽  
Yue Wang ◽  
Guangjun Lu ◽  
Jiuxing Jiang ◽  
...  

Currently, metasurfaces (MSs) integrating with different active materials have been widely explored to actively manipulate the resonance intensity of multi-band electromagnetic induced transparency (EIT) windows. Unfortunately, these hybrid MSs can only realize the global control of multi-EIT windows rather than selective control. Here, a graphene-functionalized complementary terahertz MS, composed of a dipole slot and two graphene-integrated quadrupole slots with different sizes, is proposed to execute selective and active control of dual-band electromagnetic induced reflection (EIR) windows. In this structure, dual-band EIR windows arise from the destructive interference caused by the near field coupling between the bright dipole slot and dark quadrupole slot. By embedding graphene ribbons beneath two quadrupole slots, the resonance intensity of two windows can be selectively and actively modulated by adjusting Fermi energy of the corresponding graphene ribbons via electrostatic doping. The theoretical model and field distributions demonstrate that the active tuning behavior can be ascribed to the change in the damper factor of the corresponding dark mode. In addition, the active control of the group delay is further investigated to develop compact slow light devices. Therefore, the selective and active control scheme introduced here can offer new opportunities and platforms for designing multifunctional terahertz devices.


2021 ◽  
pp. 126034
Author(s):  
Neha Srivastava ◽  
Manish Srivastava ◽  
Rajeev Singh ◽  
Asad Syed ◽  
Dan Bahadur Pal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document