phase layer
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 638
Author(s):  
Ofer Tevet ◽  
David Svetlizky ◽  
David Harel ◽  
Zahava Barkay ◽  
Dolev Geva ◽  
...  

Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young’s moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (μCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free μCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin β-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.


Author(s):  
Liubov Toropova ◽  
Danil Aseev ◽  
Sergei Osipov ◽  
Alexander Ivanov

This paper is devoted to the mathematical modeling of a combined effect of directional and bulk crystallization in a phase transition layer with allowance for nucleation and evolution of newly born particles. We consider two models with and without fluctuations in crystal growth velocities, which are analytically solved using the saddle-point technique. The particle-size distribution function, solid-phase fraction in a supercooled two-phase layer, its thickness and permeability, solidification velocity, and desupercooling kinetics are defined. This solution enables us to characterize the mushy layer composition. We show that the region adjacent to the liquid phase is almost free of crystals and has a constant temperature gradient. Crystals undergo intense growth leading to fast mushy layer desupercooling in the middle of a two-phase region. The mushy region adjacent to the solid material is filled with the growing solid phase structures and is almost desupercooled.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1821
Author(s):  
Sandy A. Wasif ◽  
Salma Hesham ◽  
Diana Goehringer ◽  
Klaus Hofmann ◽  
Mohamed A. Abd El Ghany

A network-on-chip (NoC) offers high performance, flexibility and scalability in communication infrastructure within multi-core platforms. However, NoCs contribute significantly to the overall system’s power consumption. The double-layer energy efficient synchronous-asynchronous circuit-switched NoC (CS-NoC) is proposed to enhance the power utilization. To reduce the dynamic power consumption, single-rail asynchronous protocols are utilized. The two-phase and four-phase encoding algorithms are analyzed to determine the most efficient technique. For the data layer, the two asynchronous protocols reduced the power consumption by 80%, with an increase in latency when compared with the fully synchronous protocol. However, the two-phase single-rail protocol had better performance compared with the four-phase protocol by 38%, with the same power consumption and a slight increase in area of 5%. Based on this conducted analysis, the asynchronous two-phase layer had significant power reduction yet operated at a moderate frequency. Therefore, the proposed NoC is divided into two data transfer layers with a single control layer. The data transfer layers are designed using synchronous and asynchronous protocols. The synchronous layer is designated to high-frequency loads, and the asynchronous layer is confined to low-frequency loads. The switching between the layers creates a trade-off between the maximum allowed frequency and the power consumption. The proposed NoC reduces the overall power consumption by 23% when compared with recent previous work. The NoC maintains the same system performance with an 8% area increase over the fully synchronous double-layer in the literature.


2021 ◽  
Vol 10 (3) ◽  
pp. 1291-1299
Author(s):  
Fatin Nor Ahmad ◽  
Yusmar Palapa Wijaya ◽  
Khairul Anuar Mohamad ◽  
Nafarizal Nayan ◽  
Megat Muhammad Ikhsan Megat Hasnan ◽  
...  

The physical and structural characteristics of pentacene thin films on indium tin oxide (ITO)-coated glass were studied. The pentacene films were deposited using the thermal evaporation method with deposition times of 20, 30, and 60 minutes. Field-emission scanning electron microscopy (FESEM) images revealed that film thickness increased with deposition time, with a bulk phase layer appearing at 60 minutes. The presence of the thin-film phase corresponding to 15.5 Å lattice spacing was demonstrated by X-ray diffraction (XRD) patterns in pentacene films with deposition times of 20 and 30 minutes. Meanwhile, with a deposition time of 60 minutes and a lattice spacing of 14.5 Å, the existence of the bulk phase was verified in the pentacene film. Atomic force microscopy (AFM) images of the crystallinity of the pentacene films revealed that the pentacene films deposited on ITO-coated glass exhibited the formation of similar islands with modular grains, results in a fine crystalline structure. From the current-voltage (I-V) and current density-voltage (J-V) characteristics, the pentacene films were ohmic and that current increased as the pentacene’s thickness decreased. Pentacene films deposited on an ITO-coated glass substrate showed potential in the development of broadband and narrowband optoelectronic devices on a transparent substrate.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 612
Author(s):  
Abdulrazak Elzaidi ◽  
Vlastimil Masek ◽  
Stephen Bruneau

In this paper, a novel approach is presented to the measurement of marine icing phenomena under the presence of a two-phase condition. We have developed a sensor consisting of an electrostatic array and a signal processing based on a decision tree method. A three-element electrostatic array is employed to derive signals having linearly decoupled characteristics from which two key parameters, ice and water accretion layer dimension, can be determined for the purpose of environmental monitoring. The quantified characteristics revealed a correlation with the ice layer thickness in spite of the strong influence from the top water phase layer. The decision tree model established a relationship between the signal characteristics and the two accretion thickness parameters of water and ice layer. Through experimental verification, it has been observed that our sensor array in combination with the decision tree model based signal processing provides a simple practical solution to the challenging field of a two phase composition measurement such as in the marine icing considered in this study.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5797
Author(s):  
Kazimierz Czapczyk

The article presents the results of tribological tests of Ni-P/Si3N4 nanocomposite and Ni-P nickel layers deposited on the AW-7075 aluminum alloy by chemical reduction method, and the AW-7075 alloy without coating. Nanocomposite layers were produced using Si3N4 siliconnitride in the form of a polydisperse powder whose particle sizes ranged from 20 to 25 nm. The influence of the content of the dispersion phase layer material on the abrasive wear, which was determined as the “ball on disc” method, was analyzed. Surface topography was examined by the contact method using a profilometer. The purpose of introducing Si3N4 particles into the Ni-P layer was to increase the wear resistance of AW-7075 aluminum alloy parts with an embedded nanocomposite coating. Based on the obtained test results, it was found that the Ni-P/Si3N4 layers are more resistant to wear than the Ni-P layers and the AW-7075 alloy layers, and are a good barrier against abrasive wear at various loads and environmental conditions.


2020 ◽  
Vol 3 (2) ◽  
pp. 94-97
Author(s):  
József Bálint Renkó ◽  
Attila Bonyár ◽  
Péter János Szabó

AbstractThis paper shows how microfluidic tools can be used for up-to-date microstructural investigations based on thin film deposition. The construction and production methods of such measuring procedures are introduced, and their application in ellipsometric investigations is shown. By using these tools, the researchers provide the possibility to observe and document the effects of certain fine structural processes in the development of the final microstructure. This paper describes two specific application areas of such microfluidics cells. Microfluidics cells can be used together with both optical microscopy and spectroscopic ellipsometry to understand previously unexplored microstructural changes.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3869
Author(s):  
Mengmeng Wang ◽  
Jiang Ju ◽  
Jingjing Li ◽  
Yang Zhou ◽  
Haiyang Lv ◽  
...  

A periodic-layered structure was observed in solid-(Cr, Fe)2B/liquid-Al diffusion couple at 750 °C. The interface morphology, the reaction products, and the potential formation mechanism of this periodic-layered structure were investigated using an electron probe microanalyzer (EPMA), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). The results indicate that the reaction between (Cr, Fe)2B and liquid Al is a diffusion-controlled process. The formation of intermetallics involves both the superficial dissolution of Fe and Cr atoms and the inward diffusion of Al at the interface. The layered structure, as characterized by various experimental techniques, is alternated by a single FeAl3 layer and a (FeAl3 + Cr3AlB4) dual-phase layer. A potential mechanism describing the formation process of this periodic-layered structure was proposed based on the diffusion kinetics based on the experimental results.


2020 ◽  
Vol 511 ◽  
pp. 145557
Author(s):  
Behnam Dashtbozorg ◽  
Xiaoying Li ◽  
Jean–Michel Romano ◽  
Antonio Garcia–Giron ◽  
Rachel L. Sammons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document