water displacement
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 80)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ying Yu ◽  
Alvinda Sri Hanamertani ◽  
Shehzad Ahmed ◽  
Zunsheng Jiao ◽  
Jonathan Fred McLaughlin ◽  
...  

Abstract Injecting carbon dioxide (CO2) as foam during enhanced oil recovery (EOR) can improve injectate mobility and increase sweep efficiency. Integrating CO2-foam techniques with carbon capture, utilization and storage (CCUS) operations is of recent interest, as the mobility control and sweep efficiency increases seen in EOR could also benefit CO2 storage during CCUS. In this study, a variety of different charge, hydrocarbon chain length, head group surfactants were evaluated by surface tension, bulk and dynamic CO2-foam performance assessments for CCUS. The optimal foam candidate was expected to provide satisfying mobility control effects under reservoir conditions, leading to an improved water displacement efficiency during CO2-foam flooding that favors a more significant CO2 storage potential. All tested surfactants were able to lower their surface tensions against scCO2 by 4-5 times, enlarging the surface area of solution/gas contact; therefore, more CO2 could be trapped in the foam system. A zwitterionic surfactant was found to have slightly higher surface tension against CO2 while exhibiting the highest foaming ability and the most prolonged foam stability with a relatively slower drainage rate among all tested surfactants. The dynamic performance of scCO2-foam stabilized by this zwitterionic surfactant was also evaluated in sandstone and carbonate cores at 13.79 MPa and 90°C. The results show that the mobility control development in carbonate core was relatively slower, suggesting a gradual foam generation process attributed to the higher permeability than the case in sandstone core. A more significant cumulative CO2 storage potential improvement, quantified based on the water production, was recorded in sandstone (53%) over the carbonate (47%). Overall, the selected foam has successfully developed CO2 mobility control and improved water displacement in the occurrence of in-situ foam generation, hence promoting the storage capacity for the injected CO2. This work has optimized the foaming agent selection method at the actual reservoir conditions and evaluated the scCO2-foam performance in establishing high flow resistance and improving the CO2 storage capacity, which benefits integrated CCUS studies or projects utilizing CO2-foam techniques.


2021 ◽  
pp. 089875642110616
Author(s):  
Fabienne L. Herren ◽  
Vinzenz Gerber ◽  
Raphael Meier ◽  
Daniela Schweizer-Gorgas ◽  
Micaël D. Klopfenstein Bregger

The volumes of equine teeth may change considerably over time for several reasons including domestication, routine dental floating, and the hypsodont and anelodont nature of the teeth. Cone beam computed tomography (CBCT) of the head is routinely performed in standing horses and, in this proof of concept study, the feasibility of measuring tooth volume from CBCT datasets was determined. The CBCT images of 5 equine cadaver cheek teeth were segmented with a software 3-dimensional (3D) Slicer using a predefined protocol, corrected manually, and re-assembled into a 3D model. Individual tooth volume (VS) was calculated from the model. After extraction, the volumes were also measured using the “gold-standard” water displacement method (VW) for comparison. The VS of 77 teeth ranged from 7114 to 42,300 mm3 which strongly correlated with VW ( r = 0.99), and on average VS was 6.1% less than VW. There was no significant difference in VS between the right and left arcades in individual animals. Maxillary cheek tooth volume was on average 40% larger than it was for mandibular counterparts. Semi-automatic image segmentation of equine cheek teeth from CBCT data is feasible and accurate but requires some manual intervention. This preliminary study provides initial data on the volume of equine cheek teeth and creates new possibilities for future in vivo studies.


2021 ◽  
pp. 105566562110556
Author(s):  
Kaninut Phienwej ◽  
Marasri Chaiworawitkul ◽  
Dhirawat Jotikasthira ◽  
Krit Khwanngern ◽  
Patiyut Sriwilas

Objective To compare the use of a computer simulation by Mimics software and the water displacement method as means for measurement of alveolar cleft volume on cone beam computed tomography (CBCT) data. Design Prospective study. Settling Institutional research. Patients Patients with unilateral complete cleft lip and palate (UCCLP) who would undergo alveolar bone grafting. Interventions CBCT images of twenty patients with UCCLP were included in the study. In the first method, the water displacement method was adopted to measure volume of plasticine filled in the alveolar cleft imprinted on 3D printed model of maxilla. In the second method a volumetric assessment function in Mimics software was adopted to measure volume of 3D virtual model of alveolar cleft constructed from CBCT images. A comparison on the alveolar cleft volumes derived from the two methods was assessed using the statistical paired t-test. Main Outcome Measure The paired-t test showed no statistically significant difference between alveolar cleft volumes measured by the two methods ( P = 0.075). Results Mean volume of the alveolar cleft measured by the water displacement method was 1.03 ± 0.31 ml whereas by the computer simulation using Mimics software the value was 1.00 ± 0.31 ml. The mean difference between the two methods was 0.03 ± 0.08 ml. Conclusion The computer simulation by Mimics software as a means for measurement of alveolar cleft volume on CBCT data is as accurate as the measurement by the water displacement method.


2021 ◽  
Vol 13 (22) ◽  
pp. 4627
Author(s):  
Zhichao Wang ◽  
Yan-Jun Shen ◽  
Xiaoyuan Zhang ◽  
Yao Zhao ◽  
Christiane Schmullius

Conventional mathematically based procedures in forest data processing have some problems, such as deviations between the natural tree and the tree described using mathematical expressions, and manual selection of equations and parameters. These problems are rooted at the algorithmic level. Our solution for these problems was to process raw data using simulated physical processes as replacements of conventional mathematically based procedures. In this mechanism, we treated the data points as solid objects and formed virtual trees. Afterward, the tree parameters were obtained by the external physical detection, i.e., computational virtual measurement (CVM). CVM simulated the physical behavior of measurement instruments in reality to measure virtual trees. Namely, the CVM process was a pure (simulated) physical process. In order to verify our assumption of CVM, we developed the virtual water displacement (VWD) application. VWD could extract stem volume from an artificial stem (consisted of 2000 points) by simulating the physical scenario of a water displacement method. Compared to conventional mathematically based methods, VWD removed the need to predefine the shape of the stem and minimized human interference. That was because VWD utilized the natural contours of the stem through the interaction between the point cloud and the virtual water molecules. The results showed that the stem volume measured using VWD was 29,636 cm3 (overestimation at 6.0%), where the true volume was 27,946 cm3. The overall feasibility of CVM was proven by the successful development of VWD. Meanwhile, technical experiences, current limitations, and potential solutions were discussed. We considered CVM as a generic method that focuses the objectivity at the algorithmic level, which will become a noteworthy development direction in the field of forest data processing in the future.


Author(s):  
В.В. Кузьмин ◽  
К.А. Болдырев ◽  
A.В. Сафонов

Изложены основы методики прогнозирования распространения тяжелых металлов на участках загрязнения подземных вод фильтратом полигонов твердых коммунальных отходов. Выполнен анализ качества фильтрата полигонов твердых коммунальных отходов и применимости статистических и эмпирических оценок коэффициента сорбции тяжелых металлов. Показана ограниченность применимости статистических оценок для анализа распространения высокоминерализованных вод фильтратов. На основе методологии геохимического моделирования разработана модель определения коэффициентов обмена между растворенной и твердой фазами – коэффициентов сорбции. Приведены результаты определения коэффициента сорбции для широкого круга катионов применительно к условиям вытеснения природных вод фильтратом полигонов твердых коммунальных отходов. Разработанная методика может быть использована для оценки влияния полигонов твердых коммунальных отходов на качество подземных вод, для прогнозирования распространения тяжелых металлов в области потенциального влияния отходов, для проведения работ в рамках ОВОС (Оценка воздействия на окружающую среду) и ПМООС (Перечень мероприятий по охране окружающей среды), для разработки систем инженерной защиты подземных вод от загрязнения. Предложенная модель может служить основой для ее дальнейшего развития с учетом процессов образования устойчивых органических комплексов металлов в водах фильтрата и комплексообразования на твердой фазе пород. The fundamentals of the method for predicting the spread of heavy metals in the areas of groundwater pollution by leachate from solid municipal waste landfills are stated. The analysis of the leachate quality of municipal solid waste landfills and the applicability of statistical and empirical estimates of the sorption coefficient of heavy metals is carried out. The limited applicability of statistical estimates for analyzing the distribution of highly mineralized leachate is shown. Based on the method of geochemical simulation, a model has been developed for determining the exchange coefficients between the dissolved and solid phases, i. e. sorption coefficients. The results of determining the sorption coefficient for a wide range of cations are presented with regard to the conditions of natural water displacement by the leachate from solid waste landfills. The developed method can be used to estimate the impact of municipal solid waste landfills on groundwater quality, to predict the spread of heavy metals in the area of potential waste impact, to carry out works within the framework of EIA (Environmental Impact Assessment) and LEPM (List of Environmental Protection Measures), to develop systems for engineering protection of groundwater from pollution. The proposed model can serve as a basis for its further improvement with account of the processes of formation of stable organic metal complexes in leachate and complexation on the hard rocks.


2021 ◽  
pp. 108201322110598
Author(s):  
Victor Vicent Matabura

The quality of vegetables during frozen storage and distribution chain is affected by fluctuating temperature regimes. The temperature variations influence ice-water displacement due to ice crystal growth and ice-sublimation. Hence, the description of quality changes of frozen vegetables during temperature fluctuations is indispensable in the frozen food industry. In this context, frozen carrots and green beans were stored under four different temperatures: −8 °C ± 3 °C, −12 °C ± 3 °C, −18 °C ± 3 °C and −23 °C ± 3 °C for 12 months. In each storage condition, two different partitions were created to achieve different amplitudes of temperature fluctuations, namely low (±0.3 °C) and large (±2 °C). The evolution of frost forming and drip loss in green beans and carrots were analysed in addition to the changes of ascorbic acid in green beans. The results indicated that high mean storage temperature and large amplitude of fluctuation significantly affect the quality indicators. The quality data for drip loss and ascorbic acid were fitted to a first-order kinetic model. An Arrhenius model was applied to describe the temperature dependency by incorporating the temperature fluctuation scenarios. A simplified physical model was used to simulate frost formation during frozen storage in green beans and carrots. Finally, the models were validated using the data collected at −18 °C and −12 °C with low and large amplitudes of fluctuation.


Author(s):  
Amit Poonia ◽  
Anuradha Gupta ◽  
Varinder Uppal

Background: The thyroid gland is vital endocrine gland which secretes three hormones i.e. thyroxin (T4), triiodothyronine (T3) and Calcitonin hormones. The thyroxin (T4) and triiodothyronine (T3) hormones are biologically active and are required for maintenance of normal levels of metabolic activity. The thyroid also produces calcitonin from the parafollicular cells which act directly on osteoclast to decrease the bone resorption which lower the blood calcium level. Deficient or excessive production of thyroid hormones may lead to serious pathological states with outward symptoms. Methods: The gross anatomical and biometrical studies were conducted on thyroid gland of buffalo, sheep and goat (n=12) collected immediately after slaughtering from slaughter house and local meat shop. The weight of thyroid gland was measured by weighing balance, volume by water displacement method, length and width of lateral lobes and isthmus by calibrated scale and inelastic thread and thickness of lateral lobes and isthmus was measured by digital vernier calliper. The data was analysed statistically. Result: The lateral lobes were roughly triangular in buffalo and elongated in sheep and oval in goat. The surfaces were granular and rough in buffalo but smooth in sheep and goat. It extended from thyroid cartilage to 2nd tracheal ring in buffalo, 1st to 6th tracheal ring in sheep and 1st to 7th tracheal ring in goat. The left lobe was larger than the right lobe in all the three species studied. The thyroid gland was biggest in buffalo followed by goat and smallest in sheep. The density of isthmus was more than the lobes in sheep and goat but not in buffalo.


2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper considers the use of a surfactant-polymer composition for the mobilization of light paraffinic oil from the D3-III carbonate reservoir at a reservoir temperature of 62°C, as well as the results of its tests in field conditions. Earlier, the composition showed its effectiveness on model carbonate cores with salinity from current (50-80 g/l) to reservoir (up to 170 g/l), in the presence of surfactants, type III microemulsions according to Winsor with oil were obtained. Based on the results of the filtration experiments performed on our own core from the productive formation D3-III, an increase in the displacement efficiency of surfactant-polymer compositions compared to water was obtained 11–14% (with a total surfactant concentration of 1%), irreversible surfactant losses in water-saturated rock–up to 0, 38 mg/g. Displacement efficiency after water and surfactant-polymer composition flooding was also estimated in the field conditions using SWCTT; its results were interpreted by various methods (analytical, in a hydrodynamic simulator), and also compared with laboratory results. Within a single-well tracer test, an assessment of the residual saturation after water filtration and injection of a surfactant-polymer composition was carried out under the following conditions: the target research radius is 3.5 m; porosity 10%, effective reservoir thickness 38 m. Based on the results of SWCTT, an increase in the displacement efficiency of 16.7% was obtained in comparison with water displacement (total surfactant concentration 1%) using an analytical method of interpretation. The adaptation of the SWCTT results on the hydrodynamic model was carried out, the most influencing parameters on the quality of adaptation were determined. The selection and justification of a pilot area for a multi-well pilot project was carried out, a sector hydrodynamic model of the site was built, and calculations were made to assess additional oil production.


2021 ◽  
Author(s):  
Sergey Tikhomirov ◽  
Fedor Bakharev ◽  
Andrey Groman ◽  
Alexander Kalyuzhnyuk ◽  
Yulia Petrova ◽  
...  

Abstract One of the motivations for EOR methods is the possible instability of the front between phases with high contrast of mobility. Highly viscous polymer slug partially solves the problem by stabilizing the front between water and oil. During further water displacement viscous fingers might appear on the rear end of the slug, and their breakthrough might reduce the oil recovery factor. In the paper we study the size of the mixing zone on the rear end of the slug and further the development of the graded viscosity banks technology (GVB or tapering) to reduce the volume of used polymer without loss of effectiveness.


Sign in / Sign up

Export Citation Format

Share Document