peroxisome proliferator
Recently Published Documents


TOTAL DOCUMENTS

10636
(FIVE YEARS 1813)

H-INDEX

219
(FIVE YEARS 16)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jialing Ma ◽  
Peng Zeng ◽  
Lipei Liu ◽  
Mengmeng Zhu ◽  
Juan Zheng ◽  
...  

Increased Nogo-B receptor (NGBR) expression in the liver improves insulin sensitivity by reducing endoplasmic reticulum stress (ER stress) and activating the AMPK pathway, although it remains elusive the mechanisms by which NGBR is induced. In this study, we found that PPARγ ligands (rosiglitazone or pioglitazone) increased NGBR expression in hepatic cells and HUVECs. Furthermore, promoter analysis defined two PPREs (PPARγ-responsive elements) in the promoter region of NGBR, which was further confirmed by the ChIP assay. In vivo, using liver-specific PPARγ deficient (PPARγLKO) mice, we identified the key role of PPARγ expression in pioglitazone-induced NGBR expression. Meanwhile, the basal level of ER stress and inflammation was slightly increased by NGBR knockdown. However, the inhibitory effect of rosiglitazone on inflammation was abolished while rosiglitazone-inhibited ER stress was weakened by NGBR knockdown. Taken together, these findings show that NGBR is a previously unrecognized target of PPARγ activation and plays an essential role in PPARγ-reduced ER stress and inflammation.


2022 ◽  
Author(s):  
Emily N Copeland ◽  
Kennedy C Whitley ◽  
Colton JF Watson ◽  
Bradley J Baranowski ◽  
Nigel Kurgan ◽  
...  

Regular exercise can direct muscle kynurenine (KYN) metabolism toward the neuroprotective branch of the kynurenine pathway thereby limiting the accumulation of neurotoxic metabolites in the brain and contributing to mental resilience. While the effect of regular exercise has been studied, the effect of muscle disease on KYN metabolism has not yet been investigated. Previous work has highlighted anxiety-like behaviors in approximately 25% of patients with DMD, possibly due to altered KYN metabolism. Here, we characterized KYN metabolism in mdx mouse models of Duchenne muscular dystrophy (DMD). Young (8-10 week old) DBA/2J (D2) mdx mice, but not age-matched C57BL/10 (C57) mdx mice, had lower levels of circulating KYNA and KYNA:KYN ratio compared with their respective wild-type (WT) controls. Moreover, only D2 mdx mice displayed signs of anxiety-like behaviour, spending more time in the corners of their cages during a novel object recognition test when compared with WT. Along with this, we found that muscles from D2 mdx mice had less peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and kynurenine amino transferase-1 enzyme content as well as elevated expression of inflammatory cytokines compared with WT muscles. Thus, our pilot work shows that KYN metabolism is altered in D2 mdx mice, with a potential contribution from altered muscle health.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Xuechun Sun ◽  
Xiaodan Sun ◽  
Huali Meng ◽  
Junduo Wu ◽  
Xin Guo ◽  
...  

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.


Immuno ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 104-117
Author(s):  
Dennis Awuah ◽  
Alisa Ruisinger ◽  
Meshal Alobaid ◽  
Chidimma Mbadugha ◽  
Amir M. Ghaemmaghami

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor expressed in dendritic cells (DCs), where it exerts anti-inflammatory responses against TLR4-induced inflammation. Recently, microRNA-511 (miR-511) has also emerged as a key player in controlling TLR4-mediated signalling and in regulating the function of DCs. Interestingly, PPARγ has been previously highlighted as a putative target of miR-511 activity; however, the link between miR-511 and PPARγ and its influence on human DC function within the context of LPS-induced inflammatory responses is unknown. Using a selection of miR-511-3p-specific inhibitors and mimics, we demonstrate for the first time that knockdown or overexpression of miR-511-3p inversely correlates with PPARγ mRNA levels and affects its transcriptional activity following treatment with rosiglitazone (RSG; PPARγ agonist), in the presence or absence of LPS. Additionally, we show that PPARγ-mediated suppression of DC activation and pro-inflammatory cytokine production in miR-511-3p knockdown DCs is abrogated following overexpression of miR-511-3p. Lastly, PPARγ activation suppressed LPS-mediated induction of indoleamine 2,3-dioxygenase (IDO) activity in DCs, most likely due to changes in miR-511-3p expression. Our data thus suggests that PPARγ-induced modulation of DC phenotype and function is influenced by miR-511-3p expression, which may serve as a potential therapeutic target against inflammatory diseases.


2022 ◽  
Author(s):  
Xiaohui Wei ◽  
Jielei Zhang ◽  
Min Tang ◽  
Xuejiao Wang ◽  
Nengguang Fan ◽  
...  

Abstract Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The fat mass and obesity–associated protein (FTO) has been shown to be involved in obesity; however, its role in NAFLD and the underlying molecular mechanisms remain largely unknown. Methods: FTO expression was first examined in the livers of patients with NAFLD and animal and cellular models of NAFLD using quantitative real-time polymerase chain reaction and western blotting. Next, its role in lipid accumulation in hepatocytes was assessed both in vitro and in vivo via gene overexpression and knockdown studies. Results: FTO expression was increased in the livers of mice and humans with hepatic steatosis, probably due to its decreased ubiquitination. FTO overexpression in HepG2 cells induced triglyceride accumulation, whereas FTO knockdown exerted an opposing effect. Consistent with the findings of in vitro studies, adeno-associated viruses 8 (AAV8)-mediated FTO overexpression in the liver promoted hepatic steatosis in C57BL/6J mice. Mechanistically, FTO inhibited the mRNA expression of peroxisome proliferator-activated receptor α (PPARα) in hepatocytes. Activation of PPARα by the PPARα agonist GW7647 reversed lipid accumulation in hepatocytes induced by FTO overexpression.Conclusions: Overall, FTO expression is increased in NAFLD, and it promotes hepatic steatosis by targeting PPARα.


Author(s):  
Takahiro Nagatake ◽  
Shigenobu Kishino ◽  
Emiko Urano ◽  
Haruka Murakami ◽  
Nahoko Kitamura ◽  
...  

AbstractDietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body’s use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chihiro Ebihara ◽  
Megumi Aizawa-Abe ◽  
Mingming Zhao ◽  
Valentino Gumbilai ◽  
Ken Ebihara

AbstractTherapeutic approach for NAFLD is limited and there are no approved drugs. Pioglitazone (PGZ), a thiazolidinedione (TZD) that acts via peroxisome proliferator activated receptor gamma (PPARγ) is the only agent that has shown consistent benefit and efficacy in clinical trials. However, the mechanism of its therapeutic effect on NAFLD remains unclear. The poor understanding may be due to problems with mouse, a species most used for animal experiments. TZDs exacerbate fatty liver in mouse models while they improve it in rat models like in human patients. Therefore, we compared the effects of TZDs including PGZ and rosiglitazone (RGZ) in ob/ob mice and Lepmkyo/Lepmkyo rats, models of leptin-deficient obesity, and A-ZIP/F-1 mice and seipin knockout (SKO) rats, models of generalized lipodystrophy. Pparg mRNA expression was markedly upregulated in fatty livers of mouse models while it was unchanged in rat models. TZDs exacerbated fatty liver in ob/ob and A-ZIP/F-1 mice, improved it in Lepmkyo/Lepmkyo rats and showed no effect in SKO rats. Gene expression analyses of Pparg and its target gene, Fsp27 revealed that PPARγ in the adipose tissue is the exclusive therapeutic target of TZDs in rats but PPARγ in the liver in addition to the adipose tissue is also a major site of actions for TZDs in mice. Although the response to TZDs in mice is the complete opposite of that in human patients, no report has pointed out the problem with TZD studies using mouse models so far. The present study might provide useful suggestions in research on TZDs.


2022 ◽  
pp. 1-7
Author(s):  
Yuni Susanti Pratiwi ◽  
Melisa Siannoto ◽  
Hanna Goenawan ◽  
Nova Sylviana ◽  
Vita Murniati Tarawan ◽  
...  

The white adipose tissue (WAT) browning process has become one of the promising methods for managing obesity. During this process, WAT is transformed into brown-like adipose tissue, which is also known as beige adipose tissue. The browning process can be activated by several inducers. One of the best candidates is peroxisome proliferator-activated receptor γ (PPARγ) agonist. Nutmeg (Myristica fragrans Houtt) is a natural PPARα/γ partial agonist that is known to contribute to the browning effect. This study aimed to explore the potential effect of nutmeg seed extract (NuSE) on body weight reduction and uncoupling protein (UCP)1, UCP2, UCP3, and peroxisome proliferator-activated receptor gamma coactivator-1 PGC-1α levels in aging rats. Eight male Wistar rats (80 weeks old) were divided into control and treatment groups. Both groups were fed a standard diet, and the treatment group was given 8.1 mg/kg body weight/day of NuSE via oral gavage for 12 weeks. After 12 weeks, the levels of UCP1, UCP2, UCP3, and PGC-1α from both inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) were examined. We observed that the administration of NuSE has no significant effect to the decreasement of rats body weights (p = 0.464), levels of UCP1 (p = 0.686), UCP2 (p = 0.360), UCP3 (p = 0.076), and PGC-1α (p = 0.200).


2022 ◽  
Vol 23 (2) ◽  
pp. 653
Author(s):  
Fatih Karadeniz ◽  
Jung Hwan Oh ◽  
Hyun Jin Jo ◽  
Jiho Yang ◽  
Hyunjung Lee ◽  
...  

Increased bone marrow adiposity is widely observed in patients with obesity and osteoporosis and reported to have deleterious effects on bone formation. Dracunculin (DCC) is a coumarin isolated from Artemisia spp. but, until now, has not been studied for its bioactive potential except antitrypanosomal activity. In this context, current study has reported the anti-adipogenic effect of DCC in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). DCC dose-dependently inhibited the lipid accumulation and expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) in hBM-MSCs induced to undergo adipogenesis. To elucidate its action mechanism, the effect of DCC on Wnt/β-catenin and AMPK pathways was examined. Results showed that DCC treatment activated Wnt/β-catenin signaling pathway via AMPK evidenced by increased levels of AMPK phosphorylation and Wnt10b expression after DCC treatment. In addition, DCC treated adipo-induced hBM-MSCs exhibited significantly increased nuclear levels of β-catenin compared with diminished nuclear PPARγ levels. In conclusion, DCC was shown to be able to hinder adipogenesis by activating the β-catenin via AMPK, providing potential utilization of DCC as a nutraceutical against bone marrow adiposity.


Sign in / Sign up

Export Citation Format

Share Document