molecular magnets
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 66)

H-INDEX

50
(FIVE YEARS 6)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 198-202
Author(s):  
Colin A. Gould ◽  
K. Randall McClain ◽  
Daniel Reta ◽  
Jon G. C. Kragskow ◽  
David A. Marchiori ◽  
...  

Magnetic effects of lanthanide bonding Lanthanide coordination compounds have attracted attention for their persistent magnetic properties near liquid nitrogen temperature, well above alternative molecular magnets. Gould et al . report that introducing metal-metal bonding can enhance coercivity. Reduction of iodide-bridged terbium or dysprosium dimers resulted in a single electron bond between the metals, which enforced alignment of the other valence electrons. The resultant coercive fields exceeded 14 tesla below 50 and 60 kelvin for the terbium and dysprosium compounds, respectively. —JSY


2022 ◽  
Vol 6 (4) ◽  
Author(s):  
Tony Liss ◽  
Parameswaran Nair

Myriam Sarachik passed away on October 7, 2021. Her work on the Kondo effect, the metal-insulator transition, and quantum tunneling in molecular magnets are highlights in her research career. But her lifetime of first-rate work was realized in the face of great adversity. She was a totem of not only scientific excellence, but also of the perseverance of the human spirit.


2021 ◽  
Author(s):  
Jon G. C. Kragskow ◽  
Jonathan Marbey ◽  
Christian Dirk Buch ◽  
Joscha Nehrkorn ◽  
Mykhaylo Ozerov ◽  
...  

<p><b>Vibronic coupling, the interaction between molecular vibrations and electronic states, is a pervasive effect that profoundly affects chemical processes. In the case of molecular magnetic materials, vibronic, or spin-phonon, coupling leads to magnetic relaxation, which equates to loss of magnetic memory and loss of phase coherence in molecular magnets and qubits, respectively. The study of vibronic coupling is challenging, and most experimental evidence is indirect. Here we employ far-infrared magnetospectroscopy to probe vibronic transitions in in [Yb(trensal)] (where H<sub>3</sub>trensal = 2,2,2-tris(salicylideneimino)trimethylamine). We find intense signals near electronic states, which we show arise due to an “envelope effect” in the vibronic coupling Hamiltonian, and we calculate the vibronic coupling fully <i>ab initio</i> to simulate the spectra. We subsequently show that vibronic coupling is strongest for vibrational modes that simultaneously distort the first coordination sphere and break the C<sub>3</sub> symmetry of the molecule. With this knowledge, vibrational modes could be identified and engineered to shift their energy towards or away from particular electronic states to alter their impact. Hence, these findings provide new insights towards developing general guidelines for the control of vibronic coupling in molecules.</b></p>


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Mahboubeh Mahdavi ◽  
Zahra Amini Sabegh ◽  
Hamid R. Hamedi ◽  
Mohammad Mahmoudi

2021 ◽  
Vol 11 (16) ◽  
pp. 7510
Author(s):  
Tomasz Blachowicz ◽  
Andrea Ehrmann

Molecular magnets are a relatively new class of purely organic or metallo-organic materials, showing magnetism even without an external magnetic field. This interdisciplinary field between chemistry and physics has been gaining increased interest since the 1990s. While bulk molecular magnets are usually hard to build because of their molecular structures, low-dimensional molecular magnets are often easier to construct, down to dot-like (zero-dimensional) structures, which are investigated by different scanning probe technologies. On these scales, new effects such as superparamagnetic behavior or coherent switching during magnetization reversal can be recognized. Here, we give an overview of the recent advances in molecular nanomagnets, starting with single-molecule magnets (0D), typically based on Mn12, Fe8, or Mn4, going further to single-chain magnets (1D) and finally higher-dimensional molecular nanomagnets. This review does not aim to give a comprehensive overview of all research fields dealing with molecular nanomagnets, but instead aims at pointing out diverse possible materials and effects in order to stimulate new research in this broad field of nanomagnetism.


2021 ◽  
Author(s):  
Kengo Oka ◽  
Yusuke Nambu ◽  
Masayuki Ochi ◽  
Naoaki Hayashi ◽  
Yoshihiro Kusano ◽  
...  

Abstract Control of spin alignment in magnetic materials is crucial for developing switching devices. In molecular magnets, magnetic anisotropy can be rationally controlled by varying their ligands that allow tuning of ligand field splitting energy. However, the inherent weak magnetic interaction between spins or spin-cluster results in spin reorientation (SR) occurring only at low temperatures. Here, we show that layered perovskite oxyfluoride Pb3Fe2O5F2 exhibits a SR transition at 380 K, with the magnetic moments changing from perpendicular to parallel to the c-axis. It is found that the SR is caused by a ferroelectric-like phase transition, where the magnetic HOMO-LUMO interaction changes upon the structural transition due to the concerted effect of the heteroleptic FeO5F coordination and the steric effect of Pb. This finding indicates that the design of spin orientation by local coordination environment, which is common in molecular magnets, can be extended to extended oxides by introducing different anions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hugo Biard ◽  
Eufemio Moreno-Pineda ◽  
Mario Ruben ◽  
Edgar Bonet ◽  
Wolfgang Wernsdorfer ◽  
...  

AbstractQuantum technologies are expected to introduce revolutionary changes in information processing in the near future. Nowadays, one of the main challenges is to be able to handle a large number of quantum bits (qubits), while preserving their quantum properties. Beyond the usual two-level encoding capacity of qubits, multi-level quantum systems are a promising way to extend and increase the amount of information that can be stored in the same number of quantum objects. Recent work (Kues et al. 2017), has shown the possibility to use devices based on photonic integrated circuits to entangle two qudits (with “d” being the number of available states). In the race to develop a mature quantum technology with real-world applications, many possible platforms are being investigated, including those that use photons, trapped ions, superconducting and silicon circuits and molecular magnets. In this work, we present the electronic read-out of a coupled molecular multi-level quantum systems, carried by a single Tb2Pc3 molecular magnet. Owning two magnetic centres, this molecular magnet architecture permits a 16 dimensions Hilbert space, opening the possibility of performing more complex quantum algorithms.


Author(s):  
Eufemio Moreno-Pineda ◽  
Wolfgang Wernsdorfer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document