wave modes
Recently Published Documents


TOTAL DOCUMENTS

957
(FIVE YEARS 176)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 849
Author(s):  
Rymantas Jonas Kazys ◽  
Justina Sestoke ◽  
Egidijus Zukauskas

Ultrasonic-guided waves are widely used for the non-destructive testing and material characterization of plates and thin films. In the case of thin plastic polyvinyl chloride (PVC), films up to 3.2 MHz with only two Lamb wave modes, antisymmetrical A0 and symmetrical S0, may propagate. At frequencies lower that 240 kHz, the velocity of the A0 mode becomes slower than the ultrasonic velocity in air which makes excitation and reception of such mode complicated. For excitation of both modes, we propose instead a single air-coupled ultrasonic transducer to use linear air-coupled arrays, which can be electronically readjusted to optimally excite and receive the A0 and S0 guided wave modes. The objective of this article was the numerical investigation of feasibility to excite different types of ultrasonic-guided waves, such as S0 and A0 modes in thin plastic films with the same electronically readjusted linear phased array. Three-dimensional and two-dimensional simulations of A0 and S0 Lamb wave modes using a single ultrasonic transducer and a linear phased array were performed. The obtained results clearly demonstrate feasibility to excite efficiently different guided wave modes in thin plastic films with readjusted phased array.


2022 ◽  
Author(s):  
Sakura Takada ◽  
Natsuhiko Yoshinaga ◽  
Nobuhide Doi ◽  
Kei Fujiwara

Reaction-diffusion coupling (RDc) generates spatiotemporal patterns, including two dynamic wave modes: traveling and standing waves. Although mode selection plays a significant role in the spatiotemporal organization of living cell molecules, the mechanism for selecting each wave mode remains elusive. Here, we investigated a wave mode selection mechanism using Min waves reconstituted in artificial cells, emerged by the RDc of MinD and MinE. Our experiments and theoretical analysis revealed that the balance of membrane binding and dissociation from the membrane of MinD determines the mode selection of the Min wave. We successfully demonstrated that the transition of the wave modes can be regulated by controlling this balance and found hysteresis characteristics in the wave mode transition. These findings highlight a novel role of the balance between activators and inhibitors as a determinant of the mode selection of waves by RDc and depict a novel mechanism in intracellular spatiotemporal pattern formations.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Julia Kharlan ◽  
Vladyslav Borynskyi ◽  
Sergey A. Bunyaev ◽  
Pavlo Bondarenko ◽  
Olga Salyuk ◽  
...  
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Minu Prabhachandran Nair ◽  
Adrian J. T. Teo ◽  
King Ho Holden Li

Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.


Author(s):  
Д. В. Монич ◽  
И. В. Матвеева ◽  
П. А. Гребнев ◽  
Д. С. Кузьмин

Состояние проблемы. Звукоизоляция легких перегородок значительно зависит от места их установки в здании. Необходимы исследования структуры звукового поля в несоразмерных помещениях и анализ его влияния на звукоизоляцию легких ограждений. Результаты. Проведены натурные и лабораторные экспериментальные исследования звукоизоляции каркасно-обшивной перегородки, установленной в коридоре. Для случая соразмерного помещения получена хорошая сходимость результатов. Теоретически исследована структура звукового поля при зеркальном отражении звука (с использованием метода прослеживания лучей). Выполнены расчеты с получением распределений долей осевых, касательных и косых лучей в помещениях, расчеты уровней интенсивности звуковых волн, падающих на боковые стены и потолок коридора. Учитывалось положение источника шума относительно перегородки и других ограждений. Выводы. Пропорции помещений влияют на звукоизоляцию легких ограждений. В диапазоне ниже граничной частоты диффузности несоразмерного помещения с источником шума структура звукового поля неоднородная, звуковые лучи падают на ограждение неравномерно с различных направлений. Это приводит к уменьшению совпадений мод колебаний в воздухе и в ограждающей конструкции, частотная характеристика звукоизоляции ограждения имеет пикообразный вид. Statement of the problem. Sound insulation of lightweight partitions depends significantly on the place of installation in the building. It is necessary to study the structure of the sound field in disproportionate rooms and analyze its effect on the sound insulation of light enclosures. Results. Natural and laboratory experimental studies of the sound insulation of the frame partitions installed in the corridor were carried out. For the case of a commensurate room, good convergence of the results was obtained. The structure of the sound field with mirror reflection of sound has been theoretically investigated using the method of tracing of sound rays. Calculations were performed to obtain the distributions of the proportions of axial sound rays, tangential sound rays, oblique sound rays in the premises, and the calculations of the intensity levels of sound waves incident on the lightweight partition and other enclosures of the corridor. The position of the noise source relative to the lightweight partition and other enclosures of the corridor was taken into account. Conclusions. The proportions of the rooms affect the sound insulation of lightweight enclosures. The structure of the sound field of a disproportionate room with a noise source is non-uniform in the range below the boundary frequency of diffuse sound field. Sound rays fall on the lightweight partition unevenly from different directions. This leads to a decrease in the coincidence of wave modes in the air and wave modes in the lightweight partition. The frequency characteristic of the sound insulation of the lightweight partition has a peak-like appearance.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Alejandro Torres-Orjuela ◽  
Xian Chen ◽  
Pau Amaro Seoane

Nano Letters ◽  
2021 ◽  
Author(s):  
Chi Zhang ◽  
Inhee Lee ◽  
Yong Pu ◽  
Sergei A. Manuilov ◽  
Denis V. Pelekhov ◽  
...  
Keyword(s):  

AIP Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 125314
Author(s):  
Huanqing Cui ◽  
Xiaokuo Yang ◽  
Lin Ni ◽  
Mingliang Zhang ◽  
Jiahao Liu ◽  
...  

2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


Sign in / Sign up

Export Citation Format

Share Document