hjb equations
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
TIM LEUNG ◽  
RAPHAEL YAN ◽  
YANG ZHOU

We study the problem of dynamically trading futures in continuous time under a multifactor Gaussian framework. We present a utility maximization approach to determine the optimal futures trading strategy. This leads to the explicit solution to the Hamilton–Jacobi–Bellman (HJB) equations. We apply our stochastic framework to two-factor models, namely, the Schwartz model and Central Tendency Ornstein–Uhlenbeck (CTOU) model. We also develop a multiscale CTOU model, which has a fast mean-reverting and a slow mean-reverting factor in the spot asset price dynamics. Numerical examples are provided to illustrate the investor’s optimal positions for different futures portfolios.


2021 ◽  
Vol 14 (9) ◽  
pp. 399
Author(s):  
Pedro Pólvora ◽  
Daniel Ševčovič

Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.


2021 ◽  
Vol 6 (5) ◽  
pp. 24-34
Author(s):  
Guy Richard Kibouka ◽  
Jean Brice Mandatsy Moungomo ◽  
Adoum Traoré Ndama

The work presented in this paper addresses the problem of joint optimization of the production, setup and corrective maintenance activities of a manufacturing system. This system consists of a machine subject to breakdowns and repairs and producing two types of parts. A corrective maintenance strategy whose repair rate depends on the number of setup operations already performed on the production system is considered in this work. The objective of this research is to propose a policy that controls production, setup, and corrective maintenance. The contribution of this paper is through the control of the repair rate, combined with the planning of production and setup in a dynamic and stochastic context. Optimality conditions in the form of Hamilton-Jacoby-Bellman (HJB) equations are obtained and a numerical approach is proposed in order to deal with the joint optimization issues. Extensive simulations are performed to address many scenarios that illustrate the interactions between production, setup and maintenance activities.


Author(s):  
Olivier Bokanowski ◽  
Athena Picarelli ◽  
Christoph Reisinger

AbstractWe study a second order Backward Differentiation Formula (BDF) scheme for the numerical approximation of linear parabolic equations and nonlinear Hamilton–Jacobi–Bellman (HJB) equations. The lack of monotonicity of the BDF scheme prevents the use of well-known convergence results for solutions in the viscosity sense. We first consider one-dimensional uniformly parabolic equations and prove stability with respect to perturbations, in the $$L^2$$ L 2 norm for linear and semi-linear equations, and in the $$H^1$$ H 1 norm for fully nonlinear equations of HJB and Isaacs type. These results are then extended to two-dimensional semi-linear equations and linear equations with possible degeneracy. From these stability results we deduce error estimates in $$L^2$$ L 2 norm for classical solutions to uniformly parabolic semi-linear HJB equations, with an order that depends on their Hölder regularity, while full second order is recovered in the smooth case. Numerical tests for the Eikonal equation and a controlled diffusion equation illustrate the practical accuracy of the scheme in different norms.


Author(s):  
Sudeep Kundu ◽  
Karl Kunisch

AbstractPolicy iteration is a widely used technique to solve the Hamilton Jacobi Bellman (HJB) equation, which arises from nonlinear optimal feedback control theory. Its convergence analysis has attracted much attention in the unconstrained case. Here we analyze the case with control constraints both for the HJB equations which arise in deterministic and in stochastic control cases. The linear equations in each iteration step are solved by an implicit upwind scheme. Numerical examples are conducted to solve the HJB equation with control constraints and comparisons are shown with the unconstrained cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Peng Yang

This paper studies the closed-loop equilibrium reinsurance-investment problem with insider information and default risk. The financial market consists of one risky asset, one defaultable bond, and one risk-free asset. The surplus process is governed by a jump-diffusion process. Two kinds of dependencies between the insurance market and the financial market are considered. In addition, the insurer has some extra claims information available from the beginning of the trading interval. The objective of the insurer is to choose a time-consistent reinsurance-investment strategy so as to maximize the expected terminal wealth while minimizing the variance of the terminal wealth. Since this problem is time-inconsistent, using closed-loop control approach from the perspective of game theory, we establish the extended Hamilton–Jacobi–Bellman (HJB) equations for the postdefault case and the predefault case, respectively. Closed-form solutions for the closed-loop equilibrium reinsurance-investment strategy and the corresponding value function are obtained. Finally, we provide a series of numerical examples to illustrate the effects of insider information and other some important model parameters on the closed-loop equilibrium reinsurance and investment strategies. The result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.


2020 ◽  
Vol 85 (3) ◽  
Author(s):  
Jingtang Ma ◽  
Jianjun Ma

AbstractFor solving the regime switching utility maximization, Fu et al. (Eur J Oper Res 233:184–192, 2014) derive a framework that reduce the coupled Hamilton–Jacobi–Bellman (HJB) equations into a sequence of decoupled HJB equations through introducing a functional operator. The aim of this paper is to develop the iterative finite difference methods (FDMs) with iteration policy to the sequence of decoupled HJB equations derived by Fu et al. (2014). The convergence of the approach is proved and in the proof a number of difficulties are overcome, which are caused by the errors from the iterative FDMs and the policy iterations. Numerical comparisons are made to show that it takes less time to solve the sequence of decoupled HJB equations than the coupled ones.


2020 ◽  
pp. 2150032
Author(s):  
Tao Hao ◽  
Qingfeng Zhu

Recently, Hao and Li [Fully coupled forward-backward SDEs involving the value function. Nonlocal Hamilton–Jacobi–Bellman equations, ESAIM: Control Optim, Calc. Var. 22(2016) 519–538] studied a new kind of forward-backward stochastic differential equations (FBSDEs), namely the fully coupled FBSDEs involving the value function in the case where the diffusion coefficient [Formula: see text] in forward stochastic differential equations depends on control, but does not depend on [Formula: see text]. In our paper, we generalize their work to the case where [Formula: see text] depends on both control and [Formula: see text], which is called the general fully coupled FBSDEs involving the value function. The existence and uniqueness theorem of this kind of equations under suitable assumptions is proved. After obtaining the dynamic programming principle for the value function [Formula: see text], we prove that the value function [Formula: see text] is the minimum viscosity solution of the related nonlocal Hamilton–Jacobi–Bellman equation combined with an algebraic equation.


2020 ◽  
Vol 7 (1) ◽  
pp. 125-130
Author(s):  
ZHONGHUA ZHU

In this paper, we consider the optimal investment control problem for a company who worries about inflation risk. We assume that the company is self-financing. The decision maker of the company can invest in a financial market consisting of two assets: one risk-free asset, one risky asset. Our purpose is to find the impacts of inflation on optimal investment policy. With the objective of maximizing the CRRA utility of terminal wealth, the closed-form solutions of the optimal investment policy are obtained by solving HJB equations. We find that the optimal investment policy is affected by the correlation coefficient between the price of risky asset and price index.


Sign in / Sign up

Export Citation Format

Share Document