receptor binding site
Recently Published Documents


TOTAL DOCUMENTS

573
(FIVE YEARS 142)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Fangzhu Zhao ◽  
Celina Keating ◽  
Gabriel Ozorowski ◽  
Namir Shaabani ◽  
Irene M. Francino-Urdaniz ◽  
...  

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we use a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduced the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for anti-viral indications could benefit from in vitro affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Chiara Chiapponi ◽  
Alice Prosperi ◽  
Ana Moreno ◽  
Laura Baioni ◽  
Silvia Faccini ◽  
...  

Swine play an important role in the ecology of influenza A viruses (IAVs), acting as mixing vessels. Swine (sw) IAVs of H1N1 (including H1N1pdm09), H3N2, and H1N2 subtypes are enzootic in pigs globally, with different geographic distributions. This study investigated the genetic diversity of swIAVs detected during passive surveillance of pig farms in Northern Italy between 2017 and 2020. A total of 672 samples, IAV-positive according to RT-PCR, were subtyped by multiplex RT-PCR. A selection of strains was fully sequenced. High genotypic diversity was detected among the H1N1 and H1N2 strains, while the H3N2 strains showed a stable genetic pattern. The hemagglutinin of the H1Nx swIAVs belonged to HA-1A, HA-1B, and HA-1C lineages. Increasing variability was found in HA-1C strains with the circulation of HA-1C.2, HA-1C.2.1 and HA-1C.2.2 sublineages. Amino acid deletions in the HA-1C receptor binding site were observed and antigenic drift was confirmed. HA-1B strains were mostly represented by the Δ146-147 Italian lineage HA-1B.1.2.2, in combination with the 1990s human-derived NA gene. One antigenic variant cluster in HA-1A strains was identified in 2020. SwIAV circulation in pigs must be monitored continuously since the IAVs’ evolution could generate strains with zoonotic potential.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2216
Author(s):  
Rosana Wing-Shan Poon ◽  
Lu Lu ◽  
Carol Ho-Yan Fong ◽  
Tak-Chuen Ip ◽  
Lin-Lei Chen ◽  
...  

Objectives: The emergence of SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of vaccines and are associated with a rebound in the number of COVID-19 cases globally. These variants contain mutations at the spike (S) protein receptor binding site (RBD), which affect antibody binding. Current commercially available antibody assays were developed before the VOCs emerged. It is unclear whether the levels of these commercially available antibody assays can predict the neutralizing antibody titers against the VOCs. In this study, we sought to determine the correlation between the binding antibody concentration and microneutralization antibody titer against the beta variant. Methods: This study included 58 COVID-19 patients. The concentrations of IgG against the SARS-CoV-2 spike protein RBD and nucleocapsid (N) protein were measured using the Abbott SARS-CoV-2 IgG II Quant assay and the SARS-CoV-2 IgG assay, respectively. The neutralization antibody titer against the wild type lineage A SARS-CoV-2 and against the beta variant (B.1.351) was determined using a conventional live virus neutralization test. Results: The geometric mean MN titer (GMT) against the beta variant was significantly lower than that against the wild type lineage A virus (5.6 vs. 47.3, P<0.0001). The anti-RBD IgG had a better correlation with the neutralizing antibody titer than that of the anti-N IgG assay against the wild type lineage A virus (Spearman rho, 0.5901 vs. 0.3827). However, the correlation between the anti-RBD or the anti-N IgG and the MN titer against the beta variant was poor. Conclusions: Currently available commercial antibody assays may not predict the level of neutralizing antibodies against the variants. A new generation of antibody tests specific for variants are required.


2021 ◽  
Author(s):  
Zhi Yang ◽  
Kim-Marie A. Dam ◽  
Michael D. Bridges ◽  
Magnus A.G. Hoffmann ◽  
Andrew T. DeLaitsch ◽  
...  

Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterized Ab1303 and Ab1573, neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding was observed only when Env trimers were not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures showed that both antibodies recognized the CD4bs on Env trimer with an occluded-open conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation included outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, did not exhibit V1V2 displacement, co-receptor binding site exposure, or a 4-stranded gp120 bridging sheet. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggested an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Joshua E. Sealy ◽  
Wendy A. Howard ◽  
Eleonora Molesti ◽  
Munir Iqbal ◽  
Nigel J. Temperton ◽  
...  

Highly pathogenic H5N1 avian influenza viruses cause devastating outbreaks in farmed poultry with serious consequences for animal welfare and economic losses. Zoonotic infection of humans through close contact with H5N1 infected birds is often severe and fatal. England experienced an outbreak of H5N1 in turkeys in 1991 that led to thousands of farmed bird mortalities. Isolation of clonal populations of one such virus from this outbreak uncovered amino acid differences in the virus haemagglutinin (HA) gene whereby the different genotypes could be associated with distinct pathogenic outcomes in chickens; both low pathogenic (LP) and high pathogenic (HP) phenotypes could be observed despite all containing a multi-basic cleavage site (MBCS) in the HA gene. Using reverse genetics, three amino acid substitutions in HA were examined for their ability to affect pathogenesis in the chicken. Restoration of amino acid polymorphisms close to the receptor binding site that are commonly found in H5 viruses only partially improved viral fitness in vitro and in vivo. A third novel substitution in the fusion peptide, HA2G4R, enabled the HP phenotype. HA2G4R decreased the pH stability of HA and increased the pH of HA fusion. The substitutions close to the receptor binding site optimised receptor binding while modulating the pH of HA fusion. Importantly, this study revealed pathogenic determinants beyond the MBCS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maja Kuzmanovska ◽  
Golubinka Boshevska ◽  
Elizabeta Janchevska ◽  
Teodora Buzharova ◽  
Milica Simova ◽  
...  

Influenza viruses know no boundaries, representing an example of rapid virus evolution combined with pressure exerted by the host’s immune system. Seasonal influenza causes 4–50 million symptomatic cases in the EU/EEA each year, with a global death toll reaching 650,000 deaths. That being the case, in 2014 North Macedonia introduced the sentinel surveillance in addition to the existing influenza surveillance in order to obtain more precise data on the burden of disease, circulating viruses and to implement timely preventive measures. The aims of this study were to give a comprehensive virological and epidemiological overview of four influenza seasons (2016–2020), assess the frequency and distribution of influenza circulating in North Macedonia and to carry out molecular and phylogenetic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A(H1N1)pdm09, A(H3N2) from ILI and SARI patients. Our results showed that out of 1,632 tested samples, 46.4% were influenza positive, with influenza A(H1N1)pdm09 accounting for the majority of cases (44%), followed by influenza B (32%) and A(H3N2) (17%). By comparing the sentinel surveillance system to the routine surveillance system, we showed that the newly applied system works efficiently and gives great results in the selection of cases. Statistically significant differences (p = &lt; 0.0000001) were observed when comparing the number of reported ILI cases among patients aged 0–4, 5–14, 15–29, and 30–64 years to the reference age group. The phylogenetic analysis of the HA sequences unveiled the resemblance of mutations circulating seasonally worldwide, with a vast majority of circulating viruses belonging to subclade 6B.1A. The PROVEAN analysis showed that the D187A substitution in the receptor binding site (RBS) of the A(H1N1)pdm09 HA has a deleterious effect on the its function. The A(H3N2) viruses fell into the 3C.2a and 3C.3a throughout the analyzed seasons. Molecular characterization revealed that various substitutions in the A(H3N2) viruses gradually replaced the parental variant in subsequent seasons before becoming the dominant variant. With the introduction of sentinel surveillance, accompanied by the advances made in whole-genome sequencing and vaccine therapeutics, public health officials can now modify their approach in disease management and intervene effectively and in a timely manner to prevent major morbidity and mortality from influenza.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2057
Author(s):  
Eun-Jee Na ◽  
Young-Sik Kim ◽  
Yoon-Ji Kim ◽  
Jun-Soo Park ◽  
Jae-Ku Oem

H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrícia Mertinková ◽  
Evelína Mochnáčová ◽  
Katarína Bhide ◽  
Amod Kulkarni ◽  
Zuzana Tkáčová ◽  
...  

AbstractWest Nile virus (WNV), re-emerging neurotropic flavivirus, can cross the blood–brain barrier (BBB) and cause fatal encephalitis and meningitis. Infection of the human brain microvascular endothelial cells (hBMECs), building blocks of the BBB, represents the pivotal step in neuroinvasion. Domain III (DIII) of the envelope (E) glycoprotein is a key receptor-binding domain, thus, it is an attractive target for anti-flavivirus strategies. Here, two combinatorial phage display peptide libraries, Ph.D.-C7C and Ph.D.-12, were panned against receptor-binding site (RBS) on DIII to isolate peptides that could block DIII. From series of pannings, nine peptides (seven 7-mer cyclic and two 12-mer linear) were selected and overexpressed in E. coli SHuffle T5. Presence of disulfide bond in 7-mer peptides was confirmed with thiol-reactive maleimide labeling. Except for linear peptide 19 (HYSWSWIAYSPG), all peptides proved to be DIII binders. Among all peptides, 4 cyclic peptides (CTKTDVHFC, CIHSSTRAC, CTYENHRTC, and CLAQSHPLC) showed significant blocking of the interaction between DIII and hBMECs, and ability to neutralize infection in cultured cells. None of these peptides showed toxic or hemolytic activity. Peptides identified in this study may serve as potential candidates for the development of novel antiviral therapeutics against WNV.


Sign in / Sign up

Export Citation Format

Share Document