monoclinic crystal
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 107)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Laila A. Jaragh-Alhadad ◽  
◽  
Mayada S. Ali ◽  

New nimesulide derivatives (A1-A6) were synthesized and investigated by IR, 1H NMR, 13C NMR, melting point, elemental analysis, mass spectra, and DSC analysis. Agent A3 single crystal was grown and solved in a monoclinic crystal system with Cc. Heat shock protein 27 (HSP27) and tubulin are essential cellular proteins for normal cell division and growth. In addition, these proteins are expressed highly in cancer cells. Breast cancer (SKBR3) and ovarian cancer (SKOV3) cell lines are our models for biological assessment. The data revealed that nimesulide analogs showed high cytotoxicity when treated with SKBR3 cell line ranges from 0.22 µM to 12.0 µM, while SKOV3 cell line from 0.1 µM to 16.0 µM. In-depth, structure-activity relationship applied on nimesulide lead structure highlights the importance of a bulk moiety on position two that reduces cell proliferation in both cell lines.


2021 ◽  
Vol 104 (4) ◽  
pp. 104-116
Author(s):  
A.K. Abildina ◽  
◽  
Kh. Avchukir ◽  
R. Zh. Dzhumanova ◽  
A.N. Beiseyeva ◽  
...  

Anode on the basis of titanium dioxide powder was made. Its morphological characteristics were investigated using ellipsometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical properties were also investigated by cyclic voltammetry. Dispersing, mixing the initial reagents for obtaining homogenized paste and its coating to a substrate, drying and cutting the electrodes were main steps of anode production. The results of ellipsometry, SEM and EDS demonstrated a uniformly distributed layer of about 200 μm thickness with porous structure, particle diameter of 50–80 nm and titanium dioxide content (45.7 %). The XRD data confirmed the active anode matrix formation with a monoclinic crystal lattice corresponding to the modification of titanium dioxide (B) with small anatase inclusions. Electrochemical behavior of the electrode was examined in acetonitrile-based Mg(TFSI)2 solution. Diffusion coefficient (DMg) and the charge transfer rate constant (kct) were determined from cyclic voltammograms 1.54∙10–2 cm2/s and 1.29∙10–4 cm/s, respectively. A two-step electrochemical reaction was revealed by the ratio of the electricity amount consumed in the cathode and anode processes at varying the number of cycles. Small values of polarization resistance (Rp) calculated from cyclic voltammograms indicated rapid diffusion of magnesium ions during intercalation/deintercalation.


Author(s):  
Мария Анатольевна Ясная ◽  
Андрей Владимирович Блинов ◽  
Алексей Борисович Голик ◽  
Давид Гурамиевич Маглакелидзе ◽  
Алексей Алексеевич Гвозденко ◽  
...  

В данной работе получены образцы наноразмерного оксида меди, стабилизированного полиэтиленгликолем различных марок с молекулярными массами от 200 до 6000 Да. Методом рентгеновской дифрактометрии исследована кристаллическая структура полученных образцов наноразмерного оксида меди. В результате рентгенофазового анализа установлено, что структура образцов представляет собой моноклинную кристаллическую решетку, с пространственной группой C2/ c. Методом фотонно-корреляционной спектроскопии изучено влияние молекулярной массы полимера на размер наночастиц. Анализ результатов исследования показал наличие во всех образцах наноразмерного оксида меди (II), стабилизированного полиэтиленгликолем с различной молекулярной массой, одной фракции частиц, распределение которых по размеру носит мономодальный характер. Установлено, что молекулярная масса полиэтиленгликоля оказывает, влияние на размер частиц CuO в коллоидных растворах, при этом фазовый состав и размеры кристаллитов остаются неизменными. Средний гидродинамический радиус частиц CuO в полученных образцах составляет порядка 140 ± 40 нм. Наименьшие значения гидродинамического радиуса 70 ± 15 нм наблюдаются в образце наноразмерного оксида меди, стабилизированного полиэтиленгликолем с молярной массой 6000 Дa. Методом синхронного термического анализа исследовано влияние стабилизатора с различными молекулярными массами на фазовые переходы образцов при термической обработке. В результате термического анализа установлено, что оптимальной температурой прокаливания порошков наноразмерного CuO является 500°C. In this work, samples of nanosized copper oxide stabilized with polyethylene glycol of various grades with molecular weights from 200 to 6000 Da were obtained. The crystal structure of the samples was investigated by X-ray diffractometry. As a result of the XRD analysis, it was found that the samples have a monoclinic crystal lattice with space group C2 / c . The effect of the molecular weight of the polymer on the size of nanoparticles was studied by the photon correlation spectroscopy method. Analysis of the results showed the presence of one fraction of particles in all samples, the size distribution was monomodal. It was found that the molecular weight of polyethylene glycol has an effect on the CuO particle size in colloidal solutions, while the phase composition and crystallite size remain unchanged. The average hydrodynamic radius of CuO particles in the obtained samples was about 140 ± 40 nm. The smallest hydrodynamic radius of 70 ± 15 nm was observed in a sample of nanosized copper oxide stabilized with polyethylene glycol with a molecular weight of 6000 Da. The effect of stabilizers with different molecular weights on the phase transitions of samples during heat treatment was investigated by the synchronous thermal analysis. As a result of thermal analysis, it was found that the optimum temperature for calcining nanosized CuO powders was 500 °C.


2021 ◽  
Author(s):  
Feng Guo ◽  
Elodie Boursier ◽  
Patricia Segonds ◽  
Alexandra Pena ◽  
Jérôme Debray ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7175
Author(s):  
Tomasz Pawlak ◽  
Małgorzata Szczesio ◽  
Marek J. Potrzebowski

In this study, we report on a structural investigation of AND-1184, with the chemical name N-[3-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]propyl]-3-methylbenzenesulfonamide (MBS), and its hydrochloride form (MBSHCl); AND-1184 is a potential API for the treatment of dementia. The single-crystal X-ray investigation of both forms results in monoclinic crystal systems with P21/c and C2/c symmetry for MBS and MBSHCl, respectively. This solid-state NMR study, combined with quantum-chemical calculations, allowed us to assign all 13C and most 1H signals. The MBS structure was defined as a completely rigid system without significant dynamic behaviours, whereas MBSHCl exhibited limited dynamic motion of the aromatic part of the molecule.


Molbank ◽  
10.3390/m1298 ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. M1298
Author(s):  
Elizaveta A. Pershina ◽  
Dmitry I. Pavlov ◽  
Nikita P. Burlutskiy ◽  
Andrei S. Potapov

The molecular structure of bis(pyrazol-1-yl)methane-4,4′-dicarboxylic acid (H2bpmdc) was determined by single crystal X-Ray diffraction analysis. The compound crystallizes in a monoclinic crystal system; the unit cell contains four formula units. The molecules of H2bpmdc are linked into zig-zag chains by intermolecular carboxyl–carboxyl hydrogen bonds. Other types of supramolecular interactions, namely, CH···N and CH···O short contacts, CH–π interactions and carbonyl–carbonyl interactions were detected in the crystal structure.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Siti Nabilla Aliya Mohd Nizar ◽  
Siti Noor Farhana Ab Rahman ◽  
Muhamad Fikri Zaini ◽  
Ainizatul Husna Anizaim ◽  
Ibrahim Abdul Razak ◽  
...  

Two newly halogenated chalcones, derivatives of C15H10ClFO (CH-ClF) and C15H10F2O (CH-FF), were synthesized using the Claisen–Schmidt condensation method. Both compounds were crystallized using a slow evaporation method, forming a monoclinic crystal system with a space group of P21 and P21/c, respectively. The compounds were further analyzed using spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR), and Ultraviolet–Visible (UV–vis) analyses. The single crystal X-ray diffraction method revealed the existence of C−H⋯O and C−H⋯F intermolecular interactions in CH-FF. Hirshfeld surface analysis was performed to confirm the existence of intermolecular interactions in the compounds. The molecular geometries obtained from the X-ray structure determination were further used to optimize the structures using density functional theory (DFT), with the B3LYP/6-311G++(d,p) basis set in the ground state. The TD-DFT/B3LYP method was used to obtain the electronic properties and the HOMO–LUMO energy gap. Both compounds exhibited A-π-A architecture with different halogen substituents in which the CH-FF, containing -fluoro substituents, possessed good electron injection ability due to its electronegative properties. This increased the flow of the charge transfer for the dye regeneration process and enhanced the efficiency of the dye-sensitized solar cell (DSSC).


2021 ◽  
Vol 2094 (2) ◽  
pp. 022002
Author(s):  
A V Ushakov ◽  
I V Karpov ◽  
L Yu Fedorov ◽  
V G Demin

Abstract Columnar nanostructures (CNS) were grown by plasma chemical synthesis at a gas mixture pressure of 90% He + 10% O2 200 Pa and substrate temperatures of 340K (sample 1) and 370K (sample 2). The effect of substrate temperature on the morphological, crystalline, magnetic, and impedance properties of CNS was studied. Scanning microscopy (SEM) showed that the morphology of CNS varies significantly from dendritic to wire structure. Energy dispersive X-ray spectroscopy (EDS) showed a change in the stoichiometry of the deficiency samples (Cu52O48) to an excess of oxygen (Cu42O58). X-ray diffraction analysis (XRD) and Rietveld fitting showed that samples 1 and 2 have a monoclinic crystal structure with a large proportion of the amorphous phase, the size of coherent scattering regions (CSR) was 26 nm (sample 1). Magnetic measurements showed that sample 1 exhibits ferromagnetic behavior, and at 6 K a magnetic hysteresis loop appears. Sample 2 from 250 K to room temperature exhibits diamagnetic behavior. A connection was found between the appearance of diamagnetism and a jump in the dielectric constant of sample 2. An assumption was made about the electron-ionic nature of the diamagnetism of sample 2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nguyen The Hoang ◽  
Je-Ho Lee ◽  
Thi Hoa Vu ◽  
Sunglae Cho ◽  
Maeng-Je Seong

AbstractGallium Telluride (GaTe), a layered material with monoclinic crystal structure, has recently attracted a lot of attention due to its unique physical properties and potential applications for angle-resolved photonics and electronics, where optical anisotropies are important. Despite a few reports on the in-plane anisotropies of GaTe, a comprehensive understanding of them remained unsatisfactory to date. In this work, we investigated thickness-dependent in-plane anisotropies of the 13 Raman-active modes and one Raman-inactive mode of GaTe by using angle-resolved polarized Raman spectroscopy, under both parallel and perpendicular polarization configurations in the spectral range from 20 to 300 cm−1. Raman modes of GaTe revealed distinctly different thickness-dependent anisotropies in parallel polarization configuration while nearly unchanged for the perpendicular configuration. Especially, three Ag modes at 40.2 ($${\text{A}}_{\text{g}}^{1}$$ A g 1 ), 152.5 ($${\text{A}}_{\text{g}}^{7}$$ A g 7 ), and 283.8 ($${\text{A}}_{\text{g}}^{12}$$ A g 12 ) cm−1 exhibited an evident variation in anisotropic behavior as decreasing thickness down to 9 nm. The observed anisotropies were thoroughly explained by adopting the calculated interference effect and the semiclassical complex Raman tensor analysis.


Sign in / Sign up

Export Citation Format

Share Document