thermal power generation
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 67)

H-INDEX

22
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Minghui Liu ◽  
Chunhua Ju ◽  
Yan Wang

China’s power industry is in a critical transformation period. The new round of power system reform in 2015 will have a profound impact on China’s power industry. Therefore, it’s necessary to analyze the influencing factors of thermal power generation efficiency. Based on the thermal power generation industry related data in China’s 30 provinces from 2005 to 2017, this paper studies the impacts of market segmentation on thermal power generation efficiency in China. And the empirical result shows that the market segmentation exhibit significant negative effects on the thermal power generation efficiency, that is, the thermal power generation efficiency significantly decrease 1.6799 for each unit increase of market segmentation index of thermal power industry. Besides, by decomposing the dynamic thermal power efficiency index, we find that the “innovation effect” is the primary channel for the market segmentation to make effects on the thermal power generation efficiency. Furthermore, our findings are still robust after considering endogenous problems and eliminating the relevant data. Finally, research conclusions of our study paper provide empirical supports for the efficient development of China’s power market.


2022 ◽  
Vol 14 (1) ◽  
pp. 504
Author(s):  
Ying Feng ◽  
Ching-Cheng Lu ◽  
I-Fang Lin ◽  
An-Chi Yang ◽  
Po-Chun Lin

Coal-based thermal power generation has long been the main source of power generation in the mainland of China. The efficiency of power generation is an important factor that determines the energy conservation and emission reduction as well as the sustainable development of the power industry in China. By comparing the regional differences of 30 provinces in the mainland from 2013 to 2017, this study uses the Super-DDF model and the TFEE to comprehensively evaluate the energy efficiency of thermal power generation. Empirical results: Overall efficiency: eastern efficiency (1.181) is the highest, followed by western (0.956), central (0.951) and northeastern (0.926). Total factor energy efficiency: eastern efficiency (0.923) is the highest, followed by western (0.754), central (0.742) and northeastern (0.710). The government and power industry managers should fully consider the regional differences in the field of thermal power generation when formulating policies so as to improve the power efficiency and promote the green development of power industry in China. Based on the analysis results, although the coal-fired power industry is more mature than other alternative energy industries, the expansion of thermal power generation cannot be considered if CO2 emissions are to be reduced. Additionally, the market share and competitiveness of the local power industry can be increased based on the different conditions of the resource endowments of each region.


2021 ◽  
Author(s):  
Xiaojun Xie ◽  
Hang Xi ◽  
Qiong Wu ◽  
Ruigang Zhang ◽  
Bo Yang ◽  
...  

The solar thermal power generation system adopts a dual-axis timely tracking instrument device, which realizes that the sunlight and the central axis of the heliostat instrument device are kept parallel, and greatly improves the utilization efficiency of the light source and the power generation efficiency. At the same time, the study of instrumentation selection in the solar thermal power generation industry cannot be ignored, which can guarantee the normal operation and basic work quality of solar thermal power projects. Therefore, based on instrumentation devices in the solar thermal power generation industry, this article explores the drawbacks of instrumentation devices in the application, and puts forward several research ideas for the drawbacks. Finally, by taking the tower-type solar thermal power generation instrument device as an example.


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032068
Author(s):  
Lijun Fan ◽  
Jiedong Cui

Abstract This paper proposes a renewable energy system based on photovoltaic power generation, wind power generation and solar thermal power generation, combining thermal power plants with low-temperature multi-effect distillation. Through the electric heater and the thermal storage system photovoltaic and wind power will spare capacity in the form of heat energy, at the same time by thermal power generation system to maintain the stability of the power supply, run under constant output scheduling policy, to the levelling of the smallest energy cost and the design of power rate of maximum satisfaction as the goal, using multi-objective particle swarm optimization (PSO) algorithm to find the best combination of capacity, this system is established. At the same time, combined with low-temperature multi-effect distillation, compared with reverse osmosis seawater desalination cost is lower, reduce energy consumption, has a good application prospect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruo-Mei Wang ◽  
Ze Tian ◽  
Fang-rong Ren

Abstract Background The energy generation efficiencies of thermal power and hydropower, which are the two main forces of electric power in China, are important factors affecting the energy conservation, emission reduction, and green development of the country’s whole power industry. Methods Considering regional differences and multiple efficient decision-making units (DMUs), this research uses the meta-Frontier super-efficiency slack-based measure (meta-SE-SBM) undesirable model to comprehensively evaluate the efficiencies of hydropower and thermal power generation in China. The CO2 emissions of thermal power generation are taken as the undesirable output. Results The ranking of the average meta-efficiency of thermal power generation in China is Eastern China > Central China > Western China, and all regions show an upward trend. However, the ranking of the average meta-efficiency of hydropower generation is Western China > Central China > Eastern China, and all these regions present a downward trend. In 2017, the technology gap ratio (TGR) values for the thermal power generation efficiency of the eastern and western regions showed a rising trend, while that for the central region showed a declining trend. The TGR values of the hydropower generation efficiency of the western region continued to increase, while those of the central and eastern regions decreased. The development trends of the TGR values of the thermal power or hydropower generation efficiencies of the three regions were not consistent with each other, indicating that technological convergence has not been achieved. In the three regions, the technology gaps in hydropower have slightly expanded, but the technology gaps in thermal power have gradually narrowed. The undesirable output CO2 of the thermal power energy efficiency of the three regions is in a surplus, and the generation of hydropower in the eastern and central regions is insufficient. Conclusions The government and power industry managers should fully consider regional heterogeneity in the efficiency of hydropower and thermal power to reduce the technology gap in China. The thermal power industry is relatively mature, but its CO2 emissions should be controlled. The hydropower industry needs further policy support to promote an efficiency improvement in it under the condition of resource endowments.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5653
Author(s):  
Huimin Wei ◽  
Lin Chen ◽  
Zhihua Ge ◽  
Lijun Yang ◽  
Xiaoze Du

For thermal power generation, the natural draft hybrid cooling system (NDHCs) with airflows in parallel design gives a multi-objective solution for water saving, performance enhancement and maintenance issues, like corrosion, by switching the loads of wet and dry sections. Performances of dry and wet sections interact with each other in the highly integrated system, increasing the complexity of operation strategies. In this context the present paper examines eight different operation schemes to reveal the relationships of ambient conditions and operation schemes. Comprehensive comparisons in the view of cooling efficiency with a same water inlet temperature are conducted firstly. Results show that there exists energy-saving potentials of the water evaporated rate, cooling performances and the pump power for different schemes. Based on the practical boundary conditions, including those of weather data, operation hours and market factors, optimal operation strategies of hybrid cooling are designed to minimize the operation costs of the energy system. For the 660 MW power generating unit integrated with a natural draft dry cooling system (NDDCs), operation costs based on NDHC after optimization decreased about 0.8% in 2010 and 0.35% in 2018 compared with that of the basic system. When comparing with the designed operation modes of hybrid cooling, 0.07 million dollars is saved after optimization.


Sign in / Sign up

Export Citation Format

Share Document