home networks
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 60)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Mustafa Al Samara ◽  
Ismail Bennis ◽  
Abdelhafid Abouaissa ◽  
Pascal Lorenz

The Internet of Things (IoT) is a fact today where a high number of nodes are used for various applications. From small home networks to large-scale networks, the aim is the same: transmitting data from the sensors to the base station. However, these data are susceptible to different factors that may affect the collected data efficiency or the network functioning, and therefore the desired quality of service (QoS). In this context, one of the main issues requiring more research and adapted solutions is the outlier detection problem. The challenge is to detect outliers and classify them as either errors to be ignored, or important events requiring actions to prevent further service degradation. In this paper, we propose a comprehensive literature review of recent outlier detection techniques used in the IoTs context. First, we provide the fundamentals of outlier detection while discussing the different sources of an outlier, the existing approaches, how we can evaluate an outlier detection technique, and the challenges facing designing such techniques. Second, comparison and discussion of the most recent outlier detection techniques are presented and classified into seven main categories, which are: statistical-based, clustering-based, nearest neighbour-based, classification-based, artificial intelligent-based, spectral decomposition-based, and hybrid-based. For each category, available techniques are discussed, while highlighting the advantages and disadvantages of each of them. The related works for each of them are presented. Finally, a comparative study for these techniques is provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ammar Riadh Kairaldeen ◽  
Nor Fadzilah Abdullah ◽  
Asma Abu-Samah ◽  
Rosdiadee Nordin

Data security is a major issue for smart home networks. Yet, different existing tools and techniques have not been proven highly effective for home networks’ data security. Blockchain is a promising technology because of the distributed computing infrastructure network that makes it difficult for hackers to intrude into the systems through the use of cryptographic signatures and smart contracts. In this paper, an architecture for smart home networks that could guarantee data integrity, robust security, and the ability to protect the validity of the blockchain transactions has been investigated. The system model is tested using various sizes of realistic datasets (30, 3 k, and 30 k to represent a small, medium, and large number of transactions, respectively). Four different consensus algorithms were considered, the conventional schemes concatenated hash transactions (CHT) and Merkle hash tree (MHT), as well as the newly proposed odd and even modified MHT (O&E MHT) and modified MHT (MMHT). Moreover, 15 hash functions were also examined and compared to understand the effects of each consensus algorithms on the data integrity verification check execution time and the time optimization provided by the proposed MMHT algorithm. The results show that even though the CHT algorithm gives the lowest execution time, it is impractical for a blockchain implementation due to the requirement to copy the entire blockchain ledger in real time. Meanwhile, the O&E MHT does not give any tangible benefit in the execution time. However, the proposed MMHT offers a minimum of 30% gain in time optimization than the conventional MHT algorithm typically used in blockchains. This work shows that the proposed MMHT consensus algorithm not only can identify malicious codes but has an improved data integrity check performance in smart homes, all while ensuring network stability.


2021 ◽  
Author(s):  
Pedro H. A. D. de Melo ◽  
Adriano Araujo Martins de Resende ◽  
Rodrigo Sanches Miani ◽  
Pedro Frosi Rosa

2021 ◽  
pp. 194-207
Author(s):  
U. J. C. Pramodya ◽  
K. T. Y. U. De Silva Wijesiriwardhana ◽  
K. T. D. Dharmakeerthi ◽  
E. A. K. V. Athukorala ◽  
A. N. Senarathne ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6280
Author(s):  
Jinsuk Baek ◽  
Munene W. Kanampiu ◽  
Cheonshik Kim

Many home IoT devices are joining IoT networks by gaining access to some home gateway that configures smart, multimedia, and home networks. To enable secure IoT-based home networking services, (1) an IoT network should be effectively designed and configured with a IoT server, (2) a messaging protocol is required to exchange information between the IoT server and IoT devices, and (3) the home gateway should monitor all safety aspects in both inbound and outbound traffic of the home network. However, not all home network users put in consideration the need for an adequate security posture. Instead, many users still rely on the minimum home network security by setting an easiest-to-guess password to restrict unauthorized access to their home gateway. In this paper, we propose a network design and configuration that enables secure IoT services with MQTT messaging protocol for home networks. With the proposed network design, a home network is interconnected to external networks through a home gateway. To separate the IoT-subnet from other parts of home network, the home gateway subdivides a home network into an inside-subnet and an IoT-subnet with a private IP address using subnet masking. The IoT server, located in the IoT-subnet can be implemented with either a general HTTP server or a security server that acts as an MQTT broker. The secure communications among network entities are governed by a home gateway operating a well-configured extended access control. The effectiveness of the proposed design and configuration is verified through a simulation by showing that it does not impose any significant performance degradation for reinforced security. We expect the proposed configuration to help facilitate interconnection among heterogeneous network entities.


2021 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Zha Sha Putri Anugerah ◽  
Devi Pratami ◽  
Mohammad Deni Akbar

ABC Company is an agent of network construction, operation, and maintenance. ABC Company is currently implementing the STTF (Shit to the Front) project, which is the project to add FTTH (Fiber to the Home) networks in areas that can have high customer demand. One of the STTF project construction sites is the Indra Prahasta II housing location. However, the project is currently experiencing work delays due to the Covid-19 disaster in Indonesia. Delays in project execution can result in potential prospects choosing another company that provides similar services. The project schedule can be accelerated using the crashing method and TCTO (Time Cost Trade-Off) analysis to solve this problem. This research's acceleration will be carried out with alternatives for adding 3 hours, 2 hours, 1 hour, and an alternative to increasing workers' number. This project has an average duration of 55 working days with a total cost of Rp 604,124,460. The results obtained from data processing, on the alternative of adding 1 hour of overtime work, the total duration becomes 54 working days with total project cost is Rp 605,734,138. In addition to 2 hours of overtime work, the project's total duration can be reduced to 54 days with a total project cost Rp 606,803,619. And for the addition of 3 hours overtime, the total duration can be shortened to 54 days with a total cost of Rp 606,803,619. As for increasing the number of workers, project work duration can be shortened to 54 working days with a total project cost Rp 604,556,748


2021 ◽  
Vol 17 (1) ◽  
pp. 60
Author(s):  
Chih Lin Hu ◽  
Liang Xing Kuo ◽  
Yung Hui Chen ◽  
Thitinan Tantidham ◽  
Pattanasak Mongkolwat

Sign in / Sign up

Export Citation Format

Share Document