particle fluxes
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 47)

H-INDEX

53
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Hui Li ◽  
Jiquan Li ◽  
Yan-Lin Fu ◽  
Zheng-Xiong Wang ◽  
Min Jiang

Abstract Two reduced simulation approaches are exploited to predict the parametric boundary of dominant instability regime with global effects and the characteristics of corresponding turbulent particle fluxes in tokamak plasmas. One is usual numerical simulation of coexisting ion temperature gradient (ITG) mode and trapped electron mode (TEM) turbulence employing an extended fluid code (ExFC) based on the so-called Landau-Fluid model including the trapped electron dynamics. Here the density gradient (i.e. R/Ln) driven TEM (∇n-TEM) is emphasized. The other one is a surrogate turbulence transport model, taking a neural network (NN) based approach with speeding calculation. It is shown that the turbulent particle flux, particularly their directions depend on the type of micro-instability as ITG and/or TEM. On the other hand, the density gradient may govern the direction of the turbulent particle fluxes in general circumstances. Specifically, in the parameter regime explored here, the ITG and the electron temperature gradient driven TEM (∇Te-TEM) are destabilized for flat density profile, generally causing an inward particle flux, i.e., particle pinch. Contrarily, for steep density profile, the ∇n-TEM or coexisting ITG and TEM turbulence are dominant so that the particle always diffuses outwards. An empirical criterion is obtained to predict the dominant instability and the direction of particle flux for medium density gradients, involving the gradients of both ion and electron temperature as well as the density. These two transport models are applied to analyze the spontaneous excitation of a quasi-coherent mode (QCM) in the turbulence modulation discharge by MHD magnetic island observed on tokamak HL-2A, clearly showing a dynamic transition from ITG to TEM. Furthermore, the ExFC-NN model can predict and speed up the analysis of the turbulence transport in tokamak experiments.


2021 ◽  
Vol 923 (2) ◽  
pp. 151
Author(s):  
Anton Artemyev ◽  
Ivan Zimovets ◽  
Ivan Sharykin ◽  
Yukitoshi Nishimura ◽  
Cooper Downs ◽  
...  

Abstract Magnetic field line reconnection is a universal plasma process responsible for the conversion of magnetic field energy to plasma heating and charged particle acceleration. Solar flares and Earth's magnetospheric substorms are two of the most investigated dynamical systems where global magnetic field reconfiguration is accompanied by energization of plasma populations. Such a reconfiguration includes formation of a long-living current system connecting the primary energy release region and cold dense conductive plasma of the photosphere/ionosphere. In both flares and substorms the evolution of this current system correlates with the formation and dynamics of energetic particle fluxes (although energy ranges can be different for these systems). Our study is focused on the similarity between flares and substorms. Using a wide range of data sets available for flare and substorm investigations, we qualitatively compare the dynamics of currents and energetic particle fluxes for one flare and one substorm. We show that there is a clear correlation between energetic particle precipitations (associated with energy release due to magnetic reconnection seen from riometer and hard X-ray measurements) and magnetic field reconfiguration/formation of the current system, whereas the long-term current system evolution correlates better with hot plasma fluxes (seen from in situ and soft X-ray measurements). We then discuss how data sets of in situ measurements of magnetospheric substorms can help interpret solar flare data.


2021 ◽  
Author(s):  
Baonian Wan ◽  
Xianzu Gong ◽  
Yunfeng Liang ◽  
Nong Xiang ◽  
Guo Sheng Xu ◽  
...  

2021 ◽  
Vol 26 (3) ◽  
pp. 224-238
Author(s):  
O. V. Dudnik ◽  
◽  
O. V. Yakovlev ◽  

Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhanced subrelativistic electron fluxes at the altitudes of the low Earth orbit satellites. Design/methodology/approach: Finding and ascertainment of new radiation belts of the Earth were made by using the data analysis from the D1e channel of recording the electrons of energies of ΔEe=180–510 keV and protons of energies of ΔEp=3.5–3.7 MeV of the satellite telescope of electrons and protons (STEP-F) aboard the “CORONAS-Photon” Earth low-orbit satellite. For the analysis, the data array with the 2 s time resolution normalized onto the active area of the position-sensitive silicon matrix detector and onto the solid angle of view of the detector head of the instrument was used. Findings: A sustained structure of three electron radiation belts in the Earth’s magnetosphere was found at the low solar and geomagnetic activity in May 2009. The two belts are known since the beginning of the space age as the Van Allen radiation belts, another additional permanent layer is formed around the drift shell with the McIlwaine parameter of L = 1.65±0.05. On some days in May 2009, the new two inner radiation belts were observed simultaneously, one of those latter being recorded between the investigated sustained belt at L≈1.65 and the Van Allen inner belt at L≈2.52. Increased particle fluxes in this unstable belt have been formed with the drift shell L≈2.06±0.14. Conclusions: The new found inner radiation belts are recorded in a wide range of geographic longitudes λ, both at the ascending and descending nodes of the satellite orbit, from λ1≈150° to λ2≈290°. Separately in the Northern or in the Southern hemispheres, outside the outer edge of the outer radiation belt, at L≥7–8, there are cases of enhanced particle fl ux density in wide range of L-shells. These shells correspond to the high-latitude region of quasi-trapped energetic charged particles. Increased particle fluxes have been recorded up to the bow shock wave border of the Earth’s magnetosphere (L≈10-12). Key words: radiation belt, STEP-F instrument, electrons, magnetosphere, drift L-shell, particle flux density


2021 ◽  
Author(s):  
Sunwoo Moon ◽  
Per Petersson ◽  
Per R Brunsell ◽  
Marek Rubel ◽  
Andrei Goriaev ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 260
Author(s):  
Stefan Gohl ◽  
František Němec ◽  
Michel Parrot

A superposed epoch analysis is conducted for five geomagnetic storms in the years 2005 and 2006 with the aim to understand energetic particle flux variations as a function of L-shell, energy and time from the Dst minimum. Data measured by the low-altitude DEMETER spacecraft were used for this purpose. The storms were identified by a Dst index below −100 nT, as well as their being isolated events in a seven-day time window. It is shown that they can be categorized into two types. The first type shows significant variations in the energetic particle fluxes around the Dst minimum and increased fluxes at high energies (>1.5 MeV), while the second type only shows increased fluxes around the Dst minimum without the increased fluxes at high energies. The first type of storm is related to more drastic but shorter-lasting changes in the solar wind parameters than the second type. One storm does not fit either category, exhibiting features from both storm types. Additionally, we investigate whether the impenetrable barrier for ultra-relativistic electrons also holds in extreme geomagnetic conditions. For the highest analyzed energies, the obtained barrier L-shells do not go below 2.6, consistent with previous findings.


2021 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Andrew Taylor ◽  
Aline Vidotto ◽  
Turlough Downes

<p>Energetic particles can drive the formation of prebiotic molecules in exoplanetary which are important for the origin of life. On the other hand, large energetic particle fluxes are known to be detrimental to developed life by damaging DNA. Thus, in order to understand the origin, and subsequent survival, of life on Earth it is necessary to first understand the energetic particle fluxes incident on Earth at that time. There are two types of energetic particles that are important: stellar energetic particles accelerated by their host star and Galactic cosmic rays.</p> <p>I will present our recent results that model the propagation of these energetic particles through the wind of a Sun-like star during its lifetime. We find, at the time when life is thought to have begun on Earth, that Galactic cosmic ray fluxes were greatly suppressed in comparison to present-day values. However, I will show that stellar energetic particle fluxes would have been larger than present-day values. I motivate that the maximum stellar energetic particle energy increases for younger stars. This is extremely important because higher energy particles are more likely to impact the surface of a planet, in addition to its atmosphere. I will briefly discuss how we applied our model to an exoplanetary system and how this can be linked to upcoming observations.</p>


2021 ◽  
Vol 59 (4) ◽  
pp. 259-267
Author(s):  
N. M. Sobolevsky ◽  
L. N. Latysheva ◽  
H. V. Kuznetsov ◽  
M. I. Panasyuk ◽  
M. V. Podzolko

Sign in / Sign up

Export Citation Format

Share Document