composite electrolyte
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 201)

H-INDEX

40
(FIVE YEARS 13)

2022 ◽  
pp. 1-12
Author(s):  
Nastran Khodabandehloo ◽  
Kosar Mozaffari ◽  
Liping Liu ◽  
Pradeep Sharma

Abstract Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid electrolytes are being increasingly explored as an alternative due to their advantages in terms of increased stability, safety and potential applications in the context of flexible and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is significantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical framework to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes and also established a simple homogenization approach for the design of microstructures to enhance ionic conductivity of composite solid electrolytes. Guided by the insights from the theoretical framework, in this paper, we ex- amine specific microstructures that can potentially yield significant improvement in the effective ionic conductivity. We numerically implement our theory in the open source general purpose finite element package FEniCS to solve the governing equations and present numerical solutions and insights on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also propose an easily manufacturable microstructure that increases the ionic conductivity of the composite electrolyte by forty times, simply by the addition of dielectric columns parallel to the solid electrolyte phase.


2021 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Jeremy Lee ◽  
Michael Rottmayer ◽  
Hong Huang

Lithium batteries utilizing solid-state electrolytes have the potential to alleviate their safety hazard, reduce packaging volume, and enable flexible design. Polymer/ceramic composite electrolytes (CPE) are more attractive because the combination is capable of remedying and/or transcending individual constituent’ properties. Recently, we fabricated a series of free-standing composite electrolyte membranes consisting of Li1.4Al0.4Ge1.6(PO4)3 (LAGP), polyethylene oxide (PEO), and lithium salts. In this study, we characterized thermal and mechanical properties of the CPEs with two representative lithium salts, i.e., lithium boron fluoride (LiBF4) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). We found that the type of lithium salt can prevail the LAGP ceramic loadings on altering the key properties. It is observed that LiTFSI, compared with LiBF4, causes more significant reduction in terms of the crystallinity of PEO, melting transition, and mechanical strengths. The differences in these aspects can be ascribed to the interactions between the polymer matrix and anions in lithium salt.


Author(s):  
Xiangjing Wang ◽  
Li Zhu ◽  
Chunsheng Chen ◽  
Huiwu Mao ◽  
Yixin Zhu ◽  
...  

Abstract Brain-inspired neuromorphic computing would bring a breakthrough to the classical computing paradigm through its massive parallelism and potential low power consumption advantages. Introduction of flexibility may bring vitality to this area by expanding its application areas to such as wearable and implantable electronics. At present, the development of flexible neuromorphic devices makes it a choice with wide prospect for next-generation wearable artificial neuromorphic computing. In this study, a freestanding graphene oxide (GO)/polyvinyl alcohol (PVA) composite solid electrolyte membrane is utilized as the gate dielectric and support material, and indium–zinc-oxide (IZO) neuromorphic transistors are fabricated on such membrane. Based on the in-plane gate modulation, many key synaptic plasticity behaviors have been successfully emulated, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), high-pass filtering, and spatiotemporal signal processing. Moreover, transition of the spiking logic and the superlinear and sublinear dendritic integration function are realized. Our results indicate that these freestanding IZO-based neuromorphic transistors may of great significance for future flexible anthropomorphic robots, wearable bionic perception.


Author(s):  
Jongkwan Lee ◽  
Kookjin Heo ◽  
Young-Woong Song ◽  
Dahee Hwang ◽  
Min-Young Kim ◽  
...  

Author(s):  
Shanmuganathan Venkatesan ◽  
Yun-Yu Chen ◽  
Chung-Yu Chien ◽  
Ming-Hsiang Tsai ◽  
Hsisheng Teng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document