hydraulic actuator
Recently Published Documents


TOTAL DOCUMENTS

809
(FIVE YEARS 180)

H-INDEX

25
(FIVE YEARS 5)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Ruichuan Li ◽  
Yi Cheng ◽  
Jikang Xu ◽  
Yanchao Li ◽  
Xinkai Ding ◽  
...  

In view of the complicated hydraulic system, the many driving parts and the great load variation in the combine harvester, and on-line monitoring methods of hydraulic actuating parts such as cutting tables, conveyors and threshing drums were studied. By analyzing the working principle of the hydraulic system of the combine harvester, a mathematical model of the hydraulic system of the combine harvester was established; a simulation model for the fault diagnosis of the hydraulic system of the combine harvester was established based on AMESim. The load signal was introduced to simulate the feeding amount, and the simulation test was carried out. According to the simulation analysis results, the best position of each monitoring point was determined. The on-line monitoring system of the hydraulic actuators of the combine harvester was designed by using LabView, which can collect and display the working parameters of the main working parts of a combine harvester in real time, and alarm the user to faulty working conditions. The field experiment results show that the function and precision of the monitoring system completely meet the requirements of field operation condition monitoring of combine harvesters. The accuracy rate of the fault alarm is 96.5%, and the automatic diagnosis time of the fault alarm is less than 1 min and 18 s, which greatly improves the operation efficiency of the combine harvester.


Author(s):  
Qing Guo ◽  
Zhenlei Chen ◽  
Dan Jiang

Abstract A leader-following quasi-synchronization control is proposed in multiple electrohydraulic actuators (MEHAs) under different switching network topologies to guarantee the follower electrohydraulic actuators (EHAs) tracking the leader motion. Firstly, each electro-hydraulic actuator (EHA) has a 3-order nonlinear dynamics with unknown external load. Then by using Lie derivative technique, the MEHAs nonlinear models with $n+1$ nodes are feedback linearized for convenient control design. Furthermore, the leader node is constructed as a virtual simulation model to be stabilized by PI controller. Meanwhile, a quasi-synchronized controller together with a disturbance observer is designed by LMI and Lyapunov techniques to guarantee that the synchronization errors between the n follower nodes and the leader node 0 are uniformly ultimate boundaries. Finally, the effectiveness of the leader-following quasi-synchronized controller is verified by a MEHAs experimental bench with 3 EHAs under switching network topologies.


2021 ◽  
Vol 1 (4) ◽  
pp. 501-522
Author(s):  
Erliana Samsuria ◽  
Yahaya M. Sam ◽  
Fazilah Hassan

This paper delivers findings on optimal robust control studies of nonlinear full car models. A nonlinear active suspension full car model is used, which considers the dynamic of a hydraulic actuator. The investigation on the benefit of using Sliding Mode Control (SMC) structure for the effective trade-off between road handling. The design of SMC in the chassis/internal subsystem is enhanced by modifying a sliding surface based on Proportional-Integral-Derivatives (PID) with the utilization of particle swarm optimization (PSO) algorithm in obtaining the best optimum value of control parameters. The switching control is designed through the Lyapunov function, which includes the boundedness of uncertainties in sprung masses that can guarantee the stability of the control design. The responses of the proposed controller have improved the disturbance rejection up to 60% as compared to the conventional SMC controller design and shown the high robustness to resist the effect of varying the parameter with minimal output deviations. The study proved that the proposed SMC scheme offers an overall effective performance in full car active suspension control to perform a better ride comfort as well as the road handling ability while maintaining a restriction of suspension travel. An intensive computer simulation (MATLAB Simulink) has been carried out to evaluate the effectiveness of the proposed control algorithm under various road surface conditions.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Jiaqi Li ◽  
Dacheng Cong ◽  
Yu Yang ◽  
Zhidong Yang

Abstract It is a big challenge for bionic legged robots to realize desired jumping heights and forward-running speeds, let alone achieve springbok-style jump-running. A key limitation is that there is no actuator system that can mimic the springbok’s muscle system to drive leg–foot system movements. In this paper, we analyze the movement process of springboks and summarize some key characteristics of actuator systems. Some key concepts are then identified based on these key characteristics. Next, we propose a new bionic hydraulic joint actuator system with impact buffering, impact energy absorption, impact energy storage, and force burst, which can be applied to various legged robots to achieve higher running speeds, higher jumping heights, longer endurance, heavier loads, and lighter mass.


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 302
Author(s):  
Triet Hung Ho ◽  
Thanh Danh Le

This paper will develop a novel electro-hydraulic actuator with energy saving characteristics. This system is able to work in differential configurations through the shifting algorithm of the valves, meaning that this developed system can be adjusted flexibly to obtain the desirable working requirements including the high effectiveness of energy recovery from the load, high velocity or torque. Instead of establishing the mathematical model for the purpose of the dynamic analysis, a model of the developed actuator is built in AMESim software. The simulation results reveal that the system is able to save approximately 20% energy consumption compared with a traditional without energy recovery EHA. Furthermore, to evaluate the accuracy of the model, experiments will be performed that prove strongly that the experimental results are well matched to the results attained from the simulation model. This work also offers a useful insight into designing and analyzing hydraulic systems without experiments.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2774
Author(s):  
Tan Van Nguyen ◽  
Huy Q. Tran ◽  
Khoa Nguyen Dang

In recent years, electro-hydraulic systems have been widely used in many industries and have attracted research attention because of their outstanding characteristics such as power, accuracy, efficiency, and ease of maintenance. However, such systems face serious problems caused simultaneously by disturbances, internal leakage fault, sensor fault, and dynamic uncertain equation components, which make the system unstable and unsafe. Therefore, in this paper, we focus on the estimation of system fault and uncertainties with the aid of advanced fault compensation techniques. First, we design a sliding mode observer using the Lyapunov algorithm to estimate actuator faults that produce not only internal leakage fault but also disturbances or unknown input uncertainties. These faults occur under the effect of payload variations and unknown friction nonlinearities. Second, Lyapunov analysis-based unknown input observer model is designed to estimate sensor faults arising from sensor noises and faults. Third, to minimize the estimated faults, a combination of actuator and sensor compensation fault is proposed, in which the compensation process is performed due to the difference between the output signal and its estimation. Finally, the numerical simulations are performed to demonstrate the effectiveness of the proposed method obtained under various faulty scenarios. The simulation results show that the efficiency of the proposed solution is better than the traditional PID controller and the sensor fault compensation method, despite the influence of noises.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 329
Author(s):  
Sungjoon Cho ◽  
Hwanjeong Cho ◽  
Dooyoul Lee

A simple method of investigating the effect of joint clearances on landing gear retraction failure is presented and applied to the main landing gear with a single sidestay and a hydraulic actuator. A geometric model is presented with assumptions of each link as a rigid body and their relative positions geometrically determined by considering the size of the clearances. We conducted a sensitivity analysis based on a geometric model of the main landing gear. The model was calibrated using the data from the technical order. A Monte Carlo simulation (MCS) was conducted, and whose input was the distance of each clearance based on the experimental design that combined the modified Latin hypercube sampling (LHS) and central composite design (CCD). As a result, we were able to find that the joint had a high potential to operate abnormally. We validated the model by using the actual failure data. Finally, the physical meaning of the sensitivity analysis results was interpreted by comparing them with the values obtained through an amplification index method that is a modified linearization method.


Sign in / Sign up

Export Citation Format

Share Document