nigrostriatal pathway
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 71)

H-INDEX

51
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 507
Author(s):  
Rachel Kelly ◽  
Alexis-Pierre Bemelmans ◽  
Charlène Joséphine ◽  
Emmanuel Brouillet ◽  
Declan P. McKernan ◽  
...  

Since the discovery of α-synuclein as the major component in Lewy bodies, research into this protein in the context of Parkinson’s disease pathology has been exponential. Cannabinoids are being investigated as potential therapies for Parkinson’s disease from numerous aspects, but still little is known about the links between the cannabinoid system and the pathogenic α-synuclein protein; understanding these links will be necessary if cannabinoid therapies are to reach the clinic in the future. Therefore, the aim of this study was to investigate the time-course of alterations in components of the endocannabinoid system after viral-mediated α-synuclein overexpression in the rat brain. Rats were given unilateral intranigral injections of AAV-GFP or AAV-α-synuclein and sacrificed 4, 8 and 12 weeks later for qRT-PCR and liquid chromatography–mass spectrometry analyses of the endocannabinoid system, in addition to histological visualization of α-synuclein expression along the nigrostriatal pathway. As anticipated, intranigral delivery of AAV-α-synuclein induced widespread overexpression of human α-synuclein in the nigrostriatal pathway, both at the mRNA level and the protein level. However, despite this profound α-synuclein overexpression, we detected no differences in CB1 or CB2 receptor expression in the nigrostriatal pathway; however, interestingly, there was a reduction in the expression of neuroinflammatory markers. Furthermore, there was a reduction in the levels of the endocannabinoid 2-AG and the related lipid immune mediator OEA at week 12 post-surgery, indicating that α-synuclein overexpression triggers dysregulation of the endocannabinoid system. Although this research does show that the endocannabinoid system is impacted by α-synuclein, further research is necessary to more comprehensively understand the link between the cannabinoid system and the α-synuclein aspect of Parkinson’s disease pathology in order for cannabinoid-based therapies to be feasible for the treatment of this disease in the coming years.


2021 ◽  
Author(s):  
Raphael Goutaudier ◽  
David Mallet ◽  
Magali Bartolomucci ◽  
Carole Carcenac ◽  
Frédérique Vossier ◽  
...  

The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive even though they have often been suggested to involve dopamine (DA). Here, we found that rats expressing compulsive alcohol-related behavior, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that a chemogenetic-induced selective hypodopaminergia of this pathway results in compulsive alcohol self-administration in rats otherwise resilient, accompanied by the emergence of alcohol withdrawal-like motivational impairments. These results demonstrate a major implication of tonic nigrostriatal hypodopaminergic state in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.


2021 ◽  
Vol 15 ◽  
Author(s):  
Eduard Bentea ◽  
Laura De Pauw ◽  
Lise Verbruggen ◽  
Lila C. Winfrey ◽  
Lauren Deneyer ◽  
...  

The astrocytic cystine/glutamate antiporter system xc– (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson’s disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT–/–) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT+/+) littermates. Contrary to adult mice, aged xCT–/– mice showed a significant decrease in LAC-induced degeneration of nigral dopaminergic neurons, depletion of striatal dopamine (DA) and neuroinflammatory reaction, compared to age-matched xCT+/+ littermates. Given this age-related protection, we further investigated the sensitivity of aged xCT–/– mice to chronic and progressive MPTP treatment. However, in accordance with our previous observations in adult mice (Bentea et al., 2015a), xCT deletion did not confer protection against MPTP-induced nigrostriatal degeneration in aged mice. We observed an increased loss of nigral dopaminergic neurons, but equal striatal DA denervation, in MPTP-treated aged xCT–/– mice when compared to age-matched xCT+/+ littermates. To conclude, we reveal age-related protection against proteasome inhibition-induced nigrostriatal degeneration in xCT–/– mice, while xCT deletion failed to protect nigral dopaminergic neurons of aged mice against MPTP-induced toxicity. Our findings thereby provide new insights into the role of system xc– in mechanisms of dopaminergic cell loss and its interaction with aging.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3472
Author(s):  
Przemysław J. Danek ◽  
Władysława A. Daniel

CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 μM and Ki = 462 μM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.


2021 ◽  
Author(s):  
Jan Rusz ◽  
Annette Janzen ◽  
Tereza Tykalová ◽  
Michal Novotný ◽  
David Zogala ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1685
Author(s):  
Rachel Kelly ◽  
Andrew G. Cairns ◽  
Jörgen Ådén ◽  
Fredrik Almqvist ◽  
Alexis-Pierre Bemelmans ◽  
...  

Animal models of Parkinson’s disease, in which the human α-synuclein transgene is overexpressed in the nigrostriatal pathway using viral vectors, are widely considered to be the most relevant models of the human condition. However, although highly valid, these models have major limitations related to reliability and variability, with many animals exhibiting pronounced α-synuclein expression failing to demonstrate nigrostriatal neurodegeneration or motor dysfunction. Therefore, the aim of this study was to determine if sequential intra-nigral administration of AAV-α-synuclein followed by the small α-synuclein aggregating molecule, FN075, would enhance or precipitate the associated α-synucleinopathy, nigrostriatal pathology and motor dysfunction in subclinical models. Rats were given unilateral intra-nigral injections of AAV-α-synuclein (either wild-type or A53T mutant) followed four weeks later by a unilateral intra-nigral injection of FN075, after which they underwent behavioral testing for lateralized motor functionality until they were sacrificed for immunohistological assessment at 20 weeks after AAV administration. In line with expectations, both of the AAV vectors induced widespread overexpression of human α-synuclein in the substantia nigra and striatum. Sequential administration of FN075 significantly enhanced the α-synuclein pathology with increased density and accumulation of the pathological form of the protein phosphorylated at serine 129 (pS129-α-synuclein). However, despite this enhanced α-synuclein pathology, FN075 did not precipitate nigrostriatal degeneration or motor dysfunction in these subclinical AAV models. In conclusion, FN075 holds significant promise as an approach to enhancing the α-synuclein pathology in viral overexpression models, but further studies are required to determine if alternative administration regimes for this molecule could improve the reliability and variability in these models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nima Khalighinejad ◽  
Neil Garrett ◽  
Luke Priestley ◽  
Patricia Lockwood ◽  
Matthew F. S. Rushworth

AbstractThe decision that it is worth doing something rather than nothing is a core yet understudied feature of voluntary behaviour. Here we study “willingness to act”, the probability of making a response given the context. Human volunteers encountered opportunities to make effortful actions in order to receive rewards, while watching a movie inside a 7 T MRI scanner. Reward and other context features determined willingness-to-act. Activity in the habenula tracked trial-by-trial variation in participants’ willingness-to-act. The anterior insula encoded individual environment features that determined this willingness. We identify a multi-layered network in which contextual information is encoded in the anterior insula, converges on the habenula, and is then transmitted to the supplementary motor area, where the decision is made to either act or refrain from acting via the nigrostriatal pathway.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shahzad S Khan ◽  
Yuriko Sobu ◽  
Herschel S Dhekne ◽  
Francesca Tonelli ◽  
Kerryn Berndsen ◽  
...  

Activating LRRK2 mutations cause Parkinson's disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Song’an Shang ◽  
Daixin Li ◽  
Youyong Tian ◽  
Rushuai Li ◽  
Hongdong Zhao ◽  
...  

AbstractDopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson’s disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid 18F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning. The striatal standardized uptake value ratio (SUVR), DTI maps (fractional anisotropy, FA; mean diffusivity, MD) in subcortical grey matter, and deterministic tractography of the nigrostriatal pathway were processed. Values in more affected (MA) side, less affected (LA) side and mean were analysed. Correlations and mediations among PET, DTI and clinical characteristics were further analysed. PD groups exhibited asymmetric pattern of dopaminergic dysfunction in putamen, impaired integrity in the microstructures (nigral FA, putaminal MD, and FA of nigrostriatal projection). On MA side, significant associations between DTI metrics (nigral FA, putaminal MD, and FA of nigrostriatal projection) and motor performance were significantly mediated by putaminal SUVR, respectively. Early asymmetric disruptions in putaminal dopamine concentrations and nigrostriatal pathway microstructure were detected using hybrid PET-MRI. The findings further implied that molecular degeneration mediates the modulation of microstructural disorganization on motor dysfunction in the early stages of PD.


Sign in / Sign up

Export Citation Format

Share Document