cloud particle
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 57)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 354 ◽  
pp. 00006
Author(s):  
Marius Kovacs ◽  
Lorand Toth ◽  
Sorin Simion

Most of combustible dusts present both fire and explosion hazard. Explosion may occur at certain concentrations of dust mixed with air and in the presence of an ignition source. The threat posed by this real danger was confirmed by the events that took place in economic units such as: feed factories, wood products, textile industry, steel, etc. Among the parameters of explosiveness of combustible dust, which can cause an explosion, we mention: maximum explosion pressure, lower explosion limit, explosive index, minimum ignition energy, electrical resistivity of dust, minimum ignition temperature of dust layer and cloud, particle size and concentration of dust in suspension. The current paper presents the results of determinations of combustible wood dust concentrations, performed at an important economic unit, manufacturing veneer and wood panels, at a dusting ventilation installation composed of fan, cyclone and textile filter. These determinations were made in the pipe connecting the fan and the bag filter, to assess possible danger of explosion in the pipe, by relating the measured concentration to the lower explosion limit (concentration of wood dust).


2021 ◽  
Author(s):  
Varaha Ravi Kiran ◽  
Madineni Venkat Ratnam ◽  
Masatomo Fujiwara ◽  
Herman Russchenberg ◽  
Frank G. Wienhold ◽  
...  

Abstract. Better understanding of aerosol-cloud interaction processes is an important aspect to quantify the role of clouds and aerosols in the climate system. There have been significant efforts to explain the ways aerosols modulate cloud properties. However, from the observational point of view, it is indeed challenging to observe and/or verify some of these processes because no single instrument or platform is proven sufficient. With this motivation, a unique set of observational field campaigns named Balloon borne Aerosol Cloud Interaction Studies (BACIS) is proposed and conducted using balloon borne in-situ measurements in addition to the ground-based (Lidars, MST radar, LAWP, MWR, Ceilometer) and space borne (CALIPSO) remote sensing instruments from Gadanki (13.45° N, 79.2° E). So far, 15 campaigns have been conducted as a part of BACIS campaigns from 2017 to 2020. This paper presents the concept of observational approach, lists the major objectives of the campaigns, describes the instruments deployed, and discusses results from selected campaigns. Consistency in balloon borne measurements is assessed using the data from simultaneous observations of ground-based, space borne remote sensing instruments. A good agreement is found among multi-instrumental observations. Balloon borne in-situ profiling is found to complement the information provided by ground-based and/or space borne measurements. A combination of the Compact Optical Backscatter AerosoL Detector (COBALD) and Cloud Particle Sensor (CPS) sonde is employed for the first time to discriminate cloud and aerosol in an in-situ profile. A threshold value of COBALD color index (CI) for ice clouds is found to be between 18 and 20 and CI values for coarse mode aerosol particle range between 11 and 15. Using the data from balloon measurements, the relationship between cloud and aerosol is quantified for the liquid clouds. A statistically significant slope (aerosol-cloud interaction index) of 0.77 (0.86) found between aerosol back scatter from 300 m (400 m) below the cloud base and cloud particle count within the cloud indicates the role of aerosol in the cloud activation process. In a nutshell, the results presented here demonstrate the observational approach to quantify aerosol-cloud interactions and paves the way for further investigations using the approach.


2021 ◽  
Author(s):  
Pradeep Khatri ◽  
Tadahiro Hayasaka ◽  
Hitoshi Irie ◽  
Husi Letu ◽  
Takashi Y. Nakajima ◽  
...  

Abstract. The Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite launched on December 23, 2017, observes various geophysical parameters with the aim of a better understanding of the global climate system. As part of that aim, SGLI has great potential to unravel several uncertainties related to clouds by providing new cloud products along with several other atmospheric products related to cloud climatology, including aerosol products from polarization channels. However, a very little is known about the quality of the SGLI cloud products. This study uses data about clouds and global irradiances observed from the Earth’s surface using a sky radiometer and a pyranometer, respectively, to understand the quality of the two most fundamental cloud properties—cloud optical depth (COD) and cloud-particle effective radius (CER)—of both water and ice clouds. The SGLI-observed COD agrees well with values observed from the surface, although it agrees better for water clouds than for ice clouds, while the SGLI-observed CER exhibits poorer agreement than does the COD, with the SGLI values being generally higher than the sky radiometer values. These comparisons between the SGLI and sky radiometer cloud properties are found to differ for different cloud types of both the water and ice cloud phases and different solar and satellite viewing angles by agreeing better for relatively uniform and flat cloud type and for relatively low solar zenith angle. Analyses of SGLI-observed reflectance functions and values calculated by assuming plane-parallel cloud layers suggest that SGLI-retrieved cloud properties can have biases on the solar and satellite viewing angles, similar to other satellite sensors including the Moderate Resolution Imaging Spectroradiometer (MODIS). Furthermore, it is found that the SGLI-observed cloud properties reproduce global irradiances quite satisfactorily for both water and ice clouds by resembling several important features of the COD comparison, such as the better agreement for water clouds than for ice clouds and the tendency to underestimate (resp. overestimate) the COD in SGLI observations for optically thick (resp. thin) clouds.


2021 ◽  
Author(s):  
Phuc Thi Minh Ha ◽  
Yugo Kanaya ◽  
Fumikazu Taketani ◽  
Maria Dolores Andrés Hernández ◽  
Benjamin Schreiner ◽  
...  

Abstract. Nitrous acid (HONO) is an important atmospheric gas given its contribution to the cycles of NOx and HOx, but its role in global atmospheric photochemistry is not fully understood. This study, for the first time, implemented three pathways of HONO formation in the chemistry-climate model CHASER (MIROC-ESM) to explore three physical phenomena: gas-phase kinetic reactions (GRs), direct emission (EM), and heterogeneous reactions on cloud/aerosol particles (HRs). We evaluated the simulations by the atmospheric measurements from the OMI (Ozone Monitoring Instrument), EANET (Acid Deposition Monitoring Network in eastern Asia) / EMEP (European Monitoring and Evaluation Programme) ground-based stationary observations, observations from the ship R/V Mirai, and aircraft-based measurements by ATom1 (atmospheric tomography) and EMeRGe-Asia-2018 (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global scales). We showed that the inclusion of the HONO chemistry in the modeling process reduces the model bias against the measurements for PM2.5, NO3−/HNO3, NO2, OH, O3, and CO, especially in the lower troposphere and the North Pacific (NP) region. We found that the retrieved global abundance of tropospheric HONO was 1.4 TgN. Of the three source pathways, HRs and EM contributed 63 % and 26 % to the net HONO production, respectively. We also observed that, reactions on the aerosol surfaces contributed larger amounts of HONO (51 %) than those on the cloud surfaces (12 %). The model exhibited significant negative biases for daytime HONO in the Asian off-coast region, compared with the airborne measurements by EMeRGe-Asia-2018, indicating the existence of unknown daytime HONO sources. Strengthening of aerosol uptake of NO2 near-surface and in the middle troposphere, cloud uptake, and direct HONO emission are all potential yet-unknown HONO sources. We also found that the simulated HONO abundance and its impact on NOx-O3 chemistry are sensitive to the yield of the heterogeneous conversion of NO2 to HONO (vs. HNO3). Inclusion of HONO reduces global tropospheric NOx (NO + NO2) levels by 20.4 %, thereby weakening the tropospheric oxidizing capacity, which in turn, increases CH4 lifetime (13 %) and CO abundance (8 %). HRs on the surfaces of cloud particles, which have been neglected in previous modeling studies, are the main drivers of these impacts. This effect is particularly salient for the substantial reductions of levels of OH (40–67 %) and O3 (30–45 %) in the NP region during summer given the significant reduction of NOx level (50–95 %). In contrast, HRs on aerosol surfaces in China (Beijing) enhance OH and O3 winter mean levels by 600–1700 % and 10–33 %, respectively, with regards to their minima in winter. Overall, our findings suggest that a global model that does not consider HONO heterogeneous mechanisms (especially HRs on cloud particle surfaces) may erroneously predict the effect of HONO in remote areas and polluted regions.


2021 ◽  
Vol 923 (1) ◽  
pp. 113
Author(s):  
Sagnick Mukherjee ◽  
Jonathan J. Fortney ◽  
Rebecca Jensen-Clem ◽  
Xianyu Tan ◽  
Mark S. Marley ◽  
...  

Abstract The detection of disk-integrated polarization from Luhman 16 A and B in the H band, and subsequent modeling, has been interpreted in the framework of zonal cloud bands on these bodies. Recently, Tan and Showman investigated the 3D atmospheric circulation and cloud structures of brown dwarfs with general circulation models (GCMs), and their simulations yielded complex cloud distributions showing some aspects of zonal jets, but also complex vortices that cannot be captured by a simple model. Here we use these 3D GCMs specific to Luhman 16 A and B, along with the 3D Monte Carlo radiative transfer code ARTES, to calculate their polarization signals. We adopt the 3D temperature–pressure and cloud profiles from the GCMs as our input atmospheric structures. Our polarization calculations at 1.6 μm agree well with the measured degree of linear polarization from both Luhman 16 A and B. Our calculations reproduce the measured polarization for both objects with cloud particle sizes between 0.5 and 1 μm for Luhman 16 A and of 5 μm for Luhman 16 B. We find that the degree of linear polarization can vary on hour-long timescales over the course of a rotation period. We also show that models with azimuthally symmetric band-like cloud geometries, typically used for interpreting polarimetry observations of brown dwarfs, overpredict the polarization signal if the cloud patterns do not include complex vortices within these bands. This exploratory work shows that GCMs are promising for modeling and interpreting polarization signals of brown dwarfs.


2021 ◽  
Vol 92 (12) ◽  
pp. 125105
Author(s):  
G. Bertens ◽  
G. Bagheri ◽  
H. Xu ◽  
E. Bodenschatz ◽  
J. Moláček

2021 ◽  
Vol 14 (10) ◽  
pp. 6777-6794
Author(s):  
Sorin Nicolae Vâjâiac ◽  
Andreea Calcan ◽  
Robert Oscar David ◽  
Denisa-Elena Moacă ◽  
Gabriela Iorga ◽  
...  

Abstract. Warm clouds, consisting of liquid cloud droplets, play an important role in modulating the amount of incoming solar radiation to Earth's surface and thus the climate. The size and number concentration of these cloud droplets control the reflectance of the cloud, the formation of precipitation and ultimately the lifetime of the cloud. Therefore, in situ observations of the number and diameter of cloud droplets are frequently performed with cloud and aerosol spectrometers, which determine the optical diameters of cloud particles (in the range of up to a few tens of micrometers) by measuring their forward-scattering cross sections in visible light and comparing these values with Mie theoretical computations. The use of such instruments must rely on a fast working scheme consisting of a limited pre-defined uneven grid of cross section values that corresponds to a theoretically derived uneven set of size intervals (bins). However, as more detailed structural analyses of warm clouds are needed to improve future climate projects, we present a new numerical post-flight methodology using recorded particle-by-particle sample files. The Mie formalism produces a complicated relationship between a particle's diameter and its forward-scattering cross section. This relationship cannot be expressed in an analytically closed form, and it should be numerically computed point by point, over a certain grid of diameter values. The optimal resolution required for constructing the diagram of this relationship is therefore analyzed. Cloud particle statistics are further assessed using a fine grid of particle diameters in order to capture the finest details of the cloud particle size distributions. The possibility and the usefulness of using coarser size grids, with either uneven or equal intervals, is also discussed. For coarse equidistant size grids, the general expressions of cloud microphysical parameters are calculated and the ensuing relative errors are discussed in detail. The proposed methodology is further applied to a subset of measured data, and it is shown that the overall uncertainties in computing various cloud parameters are mainly driven by the measurement errors of the forward-scattering cross section for each particle. Finally, the influence of the relatively large imprecision in the real and imaginary parts of the refractive index of cloud droplets on the size distributions and on the ensuing cloud parameters is analyzed. It is concluded that, in the presence of high atmospheric loads of hydrophilic and light-absorbing aerosols, such imprecisions may drastically affect the reliability of the cloud data obtained with cloud and aerosol spectrometers. Some complementary measurements for improving the quality of the cloud droplet size distributions obtained in post-flight analyses are suggested.


2021 ◽  
Author(s):  
Fritz Waitz ◽  
Martin Schnaiter ◽  
Thomas Leisner ◽  
Emma Järvinen

Abstract. Mixed-phase clouds consist of both supercooled liquid water droplets and solid ice crystals. Despite having a significant impact on Earth‘s climate, mixed-phase clouds are poorly understood and not well represented in climate prediction models. One piece of the puzzle is understanding and parameterizing riming of mixed-phase cloud ice crystals, which is one of the main growth mechanisms of ice crystals via the accretion of small, supercooled droplets. Especially the extent of riming on ice crystals smaller than 500 μm is often overlooked in studies – mainly because observations are scarce. Here, we investigated riming in mixed-phase clouds during three airborne campaigns in the Arctic, the Southern Ocean and US east coast. Riming was observed from stereo-microscopic cloud particle images recorded with the Particle Habit Imaging and Polar Scattering (PHIPS) probe. We show that riming is most prevalent at temperatures around −7 °C, where, on average, 43 % of the investigated particles in a size range from 100 ≤ D ≤ 700 μm showed evidence of riming. We discuss the occurrence and properties of rimed ice particles and show correlation of the occurrence and the amount of riming with ambient meteorological parameters. We show that riming fraction increases with ice particle size (< 20 % for D ≤ 200 μm, 35–40 % for D ≥ 400 μm) and liquid water content (25 % for LWC ≤ 0.05 g m−3, up to 60 % for LWC = 0.5 g m−3). We investigate the ageing of rimed particles and the difference between "normal" and "epitaxial" riming based on a case study.


2021 ◽  
Vol 21 (16) ◽  
pp. 12543-12560
Author(s):  
Youssef Wehbe ◽  
Sarah A. Tessendorf ◽  
Courtney Weeks ◽  
Roelof Bruintjes ◽  
Lulin Xue ◽  
...  

Abstract. Aerosol and cloud microphysical measurements were collected by a research aircraft during August 2019 over the United Arab Emirates (UAE). The majority of scientific flights targeted summertime convection along the eastern Al Hajar Mountains bordering Oman, while one flight sampled non-orographic clouds over the western UAE near the Saudi Arabian border. In this work, we study the evolution of growing cloud turrets from cloud base (9 ∘C) up to the capping inversion level (−12 ∘C) using coincident cloud particle imagery and particle size distributions from cloud cores under different forcing. Results demonstrate the active role of background dust and pollution as cloud condensation nuclei (CCN) with the onset of their deliquescence in the subcloud region. Subcloud aerosol sizes are shown to extend from submicron to 100 µm sizes, with higher concentrations of ultra-giant CCN (d>10 µm) from local sources closer to the Saudi border, compared with the eastern orographic region where smaller CCN are observed. Despite the presence of ultra-giant CCN from dust and pollution in both regions, an active collision–coalescence (C–C) process is not observed within the limited depths of warm cloud (<1000 m). The state-of-the-art observations presented in this paper can be used to initialize modeling case studies to examine the influence of aerosols on cloud and precipitation processes in the region and to better understand the impacts of hygroscopic cloud seeding on these clouds.


2021 ◽  
Author(s):  
Sorin Nicolae Vâjâiac ◽  
Andreea Calcan ◽  
Robert Oscar David ◽  
Denisa-Elena Moacă ◽  
Gabriela Iorga ◽  
...  

Abstract. Warm clouds, consisting of liquid cloud droplets, play an important role in modulating the amount of incoming solar radiation to Earth’s surface and thus, the climate. The size and number concentration of these cloud droplets control the reflectance of the cloud, the formation of precipitation and ultimately, the lifetime of the cloud. Therefore, in situ observations of the number and diameter of cloud droplets are frequently performed with cloud and aerosol spectrometers, which determine the optical diameters of cloud particles (in the range of up to a few tens of microns) by measuring their forward scattering cross sections in visible light and comparing these values with Mie-theoretical computations. The use of such instruments must rely on a fast working scheme consisting of a limited pre-defined uneven grid of cross section values that corresponds to a theoretically derived uneven set of size intervals (bins). However, as more detailed structural analyses of warm clouds are needed to improve future climate projects, we present a new numerical post-flight methodology using recorded particle-by-particle sample files. The Mie formalism produces a complicated relationship between a particle’s diameter and its forward scattering cross section. This relationship cannot be expressed in an analytically closed form and it should be numerically computed point by point, over a certain grid of diameter values. The optimal resolution required for constructing the diagram of this relationship is therefore analysed. Cloud particle statistics are further assessed using a fine grid of particle diameters in order to capture the finest details of the cloud particle size distributions. The possibility and the usefulness of using coarser size grids, with either uneven or equal intervals is also discussed. For coarse equidistant size grids, the general expressions of cloud microphysical parameters are calculated and the ensuing relative errors are discussed in detail. The proposed methodology is further applied to a subset of measured data and it is shown that the overall uncertainties in computing various cloud parameters are mainly driven by the measurement errors of the forward scattering cross section for each particle. Finally, the influence of the relatively large imprecision in the real and imaginary parts of the refractive index of cloud droplets on the size distributions and on the ensuing cloud parameters is analysed. It is concluded that, in the presence of high atmospheric loads of hydrophilic and light absorbing aerosols, such imprecisions may drastically affect the reliability of the cloud data obtained with cloud and aerosol spectrometers. Some complementary measurements for improving the quality of the cloud droplet size distributions obtained in post-flight analyses are suggested.


Sign in / Sign up

Export Citation Format

Share Document