numerical application
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 79)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 5 (11) ◽  
pp. 291
Author(s):  
Elide Nastri ◽  
Vincenzo Piluso ◽  
Alessandro Pisapia

The ultimate behaviour of aluminium members subjected to uniform compression or bending is strongly influenced by local buckling effects which occur in the portions of the section during compression. In the current codes, the effective thickness method (ETM) is applied to evaluate the ultimate resistance of slender cross-sections affected by elastic local buckling. In this paper, a recent extension of ETM is presented to consider the local buckling effects in the elastic-plastic range and the interaction between the plate elements constituting the cross-section. The theoretical results obtained with this approach, applied to box-shaped aluminium members during compression or in bending, are compared with the experimental tests provided in the scientific literature. It is observed that the ETM is a valid and accurate tool for predicting the maximum resistance of box-shaped aluminium members during compression or in bending.


2021 ◽  
Vol 13 (19) ◽  
pp. 11091
Author(s):  
Mirian Bortoluzzi ◽  
Marcelo Furlan ◽  
Simone Geitenes Colombo ◽  
Tatiele Martins Amaral ◽  
Celso Correia de Souza ◽  
...  

This article aims to propose a multi-criteria model to support decision-making from a portfolio in selecting technologies for Distributed Generation of Energy (DGE) projects based on the characteristics of the geographic space in Brazil. The decision model involves using multi-criteria to support the evaluation, prioritization, and selection of projects under a multistage decision-making process that fits into a strategic management cycle within the energy sector of Mato Grosso do Sul (Brazil). The over-classification techniques Preference Ranking Organization Technique for Enrichment Evaluations (PROMETHEE) II and V were applied under the Value-Focused Thinking (VFT) approach, reflecting the decision-maker or manager preferences among several conflicting criteria in the investment context of sustainable distributed energy generation projects. Based on real data, a numerical application is employed to view the steps of this decision model and illustrate the adequacy and effectiveness in practical issues of portfolio management.


Author(s):  
Natalia Romero ◽  
Miguel Hernandez

In this paper, we study the simplest quadratic matrix equation: $\mathcal{Q}(X)=X^2+BX+C=0$. We transform this equation into an equivalent fixed-point equation and based on it we construct the Krasnoselskij method. From this transformation, we can obtain iterative schemes more accurate than successive approximation method. Moreover, under suitable conditions, we establish different results for the existence and localization of a solution for this equation with the Krasnoselskij method. Finally, we see numerically that the predictor-corrector iterative scheme with the Krasnoselskij method as a predictor and the Newton method as corrector method, can improves the numerical application of the Newton method when approximating a solution of the quadratic matrix equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinman He ◽  
Tengfei Lei ◽  
Limin Jiang

This work generalizes the projection scaling factor to a general constant matrix and proposes the matrix-projection synchronization (MPS) for fractional-order neural networks (FNNs) based on sliding mode control firstly. This kind of scaling factor is far more complex than the constant scaling factor, and it is highly variable and difficult to predict in the process of realizing the synchronization for the driving and response systems, which can ensure high security and strong confidentiality. Then, the fractional-order integral sliding surface and sliding mode controller for FNNs are designed. Furthermore, the criterion for realizing MPS is proved, and the reachability and stability of the synchronization error system are analyzed, so that the global MPS is realized for FNNs. Finally, a numerical application is given to demonstrate the feasibility of theory analysis. MPS is more general, so it is reduced to antisynchronization, complete synchronization, projective synchronization (PS), and modified PS when selecting different projective matrices. This work will enrich the synchronization theory of FNNs and provide a feasible method to study the MPS of other fractional-order dynamical models.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2157
Author(s):  
Ehsan Akbari Sekehravani ◽  
Giovanni Leone ◽  
Rocco Pierri

This paper aims at discussing the resolution achievable in the reconstruction of both circumference sources from their radiated far-field and circumference scatterers from their scattered far-field observed for the 2D scalar case. The investigation is based on an inverse problem approach, requiring the analysis of the spectral decomposition of the pertinent linear operator by the Singular Value Decomposition (SVD). The attention is focused upon the evaluation of the Number of Degrees of Freedom (NDF), connected to singular values behavior, and of the Point Spread Function (PSF), which accounts for the reconstruction of a point-like unknown and depends on both the NDF and on the singular functions. A closed-form evaluation of the PSF relevant to the inverse source problem is first provided. In addition, an approximated closed-form evaluation is introduced and compared with the exact one. This is important for the subsequent evaluation of the PSF relevant to the inverse scattering problem, which is based on a similar approximation. In this case, the approximation accuracy of the PSF is verified at least in its main lobe region by numerical simulation since it is the most critical one as far as the resolution discussion is concerned. The main result of the analysis is the space invariance of the PSF when the observation is the full angle in the far-zone region, showing that resolution remains unchanged over the entire source/investigation domain in the considered geometries. The paper also poses the problem of identifying the minimum number and the optimal directions of the impinging plane waves in the inverse scattering problem to achieve the full NDF; some numerical results about it are presented. Finally, a numerical application of the PSF concept is performed in inverse scattering, and its relevance in the presence of noisy data is outlined.


2021 ◽  
Vol 57 (9) ◽  
Author(s):  
R. Frezzotti ◽  
G. Gagliardi ◽  
V. Lubicz ◽  
F. Sanfilippo ◽  
S. Simula

AbstractWe propose a scheme of lattice twisted-mass fermion regularization which is particularly convenient for application to isospin breaking (IB) QCD and QED calculations, based in particular on the so called RM123 approach, in which the IB terms of the action are treated as a perturbation. The main, practical advantage of this scheme is that it allows the calculation of IB effects on some mesonic observables, like e.g. the $$\pi ^+ - \pi ^0$$ π + - π 0 mass splitting, using lattice correlation functions in which the quark and antiquark fields in the meson are regularized with opposite values of the Wilson parameter r. These correlation functions are found to be affected by much smaller statistical fluctuations, with respect to the analogous functions in which quark and antiquark fields are regularized with the same value of r. Two numerical application of this scheme, that we call rotated twisted-mass, within pure QCD and QCD + QED respectively, are also provided for illustration.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Marilisa Botte ◽  
Amedeo Zampi ◽  
Cristina Oreto ◽  
Luca D’Acierno

The use of Building Information Modelling (BIM) is becoming increasingly adopted worldwide to support the creation and management of digital environments in which physical and functional features of a facility are modelled. Due to its characteristic flexibility and interoperability, it rapidly extends beyond the boundaries of applications for which it was originally conceived, thus being implemented in other contexts such as the infrastructure sector. Indeed, during each phase of the construction process for building a linear infrastructure, a suitable design of a traffic control plan to optimising traffic flows proves crucial, both for drivers and builders. In this context, there arises the need to perform a comprehensive analysis, combining infrastructure design and building issues with transportation theory principles. For this purpose, the paper proposes a comparative analysis of two different approaches relying on BIM-based tools, namely integrated (i.e., BIM environments with an in-built module for transport simulation tasks) and an interfaceable solution (i.e., BIM environments offering a customised interface for external mobility simulation software). Specifically, after an overview of the issues involved, the two solutions analysed are customised according to the software packages adopted, and a numerical application is carried out. The goal of the paper is to perform a preliminary analysis on the potential of such frameworks by means of comparative evaluation aimed at identifying pros and cons of the two approaches, as well as the best field of application, according to the effort required from the designer, the degree of flexibility offered, and the target pursued.


2021 ◽  
Vol 73 (8) ◽  
pp. 1034-1055
Author(s):  
R. Jedynak ◽  
J. Gilewicz

UDC 517.5 The knowledge of the location of zeros and poles Padé and -point Padé approximations to a given function provides much valuable information about the function being studied.In general PAs reproduce the exact zeros and poles of considered function, but, unfortunately, some spurious zeros and poles appear randomly.Then, it is clear that the control of the position of poles and zeros becomes essential for applications of Padé approximation method.The numerical examples included in the paper show how necessary for the convergence of PA is the knowledge of the position of their zeros and poles.We relate our research of localization of poles and zeros of PA and NPA in the case of Stieltjes functions because we are interested in the efficiency of numerical application of these approximations. These functions belong to the class of complex-symmetric functions.The PA and NPA to the Stieltjes functions in different regions of the complex plane is also analyzed. It is expected that the appropriate selection of the complex point for the definition of approximant can improve it with respect to the traditional choice of All considered cases are graphically illustrated.Some unique numerical results presented in the paper, which are sufficiently regular should motivate the reader to reflect on them.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4672
Author(s):  
Giuseppe Aiello ◽  
Salvatore Quaranta ◽  
Antonella Certa ◽  
Rosalinda Inguanta

The implementation of new forms of urban mobility is a fundamental challenge for improving the performance of city logistic systems in terms of efficiency and sustainability. For such purposes, the exploitation of electric vehicles is currently being investigated as an alternative to traditional internal combustion engines. In particular, the employment of lightweight electric cargo bikes is seen as an attractive possibility for designing improved city distribution systems. Such vehicles, however, present substantial limitations related to their endurance, speed, power, and recharging times; therefore, their configuration must be optimized considering the actual operational context and the specific characteristics of the service operated. This paper proposes the employment of modular electric cargo bikes for urban parcel delivery, with the possibility of customizing some features of the vehicle in order to optimize the performance of the system. This research initially focuses on the design of the modular vehicle and subsequently on the selection of the best configuration through a multi criteria decision method. A numerical application demonstrates the effectiveness of the approach proposed by analysing different design options and determining the most efficient solution in a specific context.


2021 ◽  
Vol 263 (1) ◽  
pp. 5291-5300
Author(s):  
Tales Sofiste ◽  
Luís Godinho ◽  
Delfim Soares ◽  
Pedro Alves Costa

Ground-borne vibrations are an increasingly common problem in large cities due to its considerable disturbance in terms of human comfort and health. In this sense, construction operations stand as a significant source of vibrations and may be critical since construction sites are frequently adjacent to existing buildings. In the present work, vibrations induced by pile driving are studied. A time-domain finite element model is developed and a post-processing approach is proposed to simulate the material damping of the soil. This damping formulation stands as a simple and direct approximation of the material damping in the system. In order to do so, the numerical response is computed without material damping, which is introduced as a post-processing procedure. An explicit and highly efficient method is applied for the time integration of the equation of motion, considering an axisymmetric formulation. A numerical application is carried out and the obtained results are compared to previous numerical and in-situ measurements available in the literature, indicating a good agreement with previous studies.


Sign in / Sign up

Export Citation Format

Share Document