monitoring networks
Recently Published Documents


TOTAL DOCUMENTS

930
(FIVE YEARS 321)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 157 ◽  
pp. 112046
Author(s):  
Mati-ur-Rasool Ashraf Virk ◽  
Muhammad Faizan Mysorewala ◽  
Lahouari Cheded ◽  
AbdulRahman Aliyu

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 246
Author(s):  
Tony Venelinov ◽  
Stefan Tsakovski

The metal bioavailability concept is implemented in the Water Framework Directive (WFD) compliance assessment. The bioavailability assessment is usually performed by the application of user-friendly Biotic Ligand Models (BLMs), which require dissolved metal concentrations to be used with the “matching” data of the supporting physicochemical parameters of dissolved organic carbon (DOC), pH and Cadissolved. Many national surface water monitoring networks do not have sufficient matching data records, especially for DOC. In this study, different approaches for dealing with the missing DOC data are presented: substitution using historical data; the appropriate percentile of DOC concentrations; and combinations of the two. The applicability of the three following proposed substitution approaches is verified by comparison with the available matching data: (i) calculations from available TOC data; (ii) the 25th percentile of the joint Bulgarian monitoring network DOC data (measured and calculated by TOC); and (iii) the 25th percentile of the calculated DOC from the matching TOC data for the investigated surface water body (SWB). The application of user-friendly BLMs (BIO-MET, M-BAT and PNEC Pro) to 13 surface water bodies (3 reservoirs and 10 rivers) in the Bulgarian surface waters monitoring network outlines that the suitability of the substitution approaches decreases in order: DOC calculated by TOC > the use of the 25th percentile of the data for respective SWB > the use of the 25th percentile of the Bulgarian monitoring network data. Additionally, BIO-MET is the most appropriate tool for the bioavailability assessment of Cu, Zn and Pb in Bulgarian surface water bodies.


2022 ◽  
Author(s):  
Anshuka Anshuka ◽  
Alexander JV Buzacott ◽  
Floris van Ogtrop

Abstract Monitoring hydrological extremes is essential for developing risk-mitigation strategies. One of the limiting factors for this is the absence of reliable on the ground monitoring networks that capture data on climate variables, which is highly evident in developing states such as Fiji. Fortunately, increasing global coverage of satellite-derived datasets is facilitating utilisation of this information for monitoring dry and wet periods in data sparse regions. In this study, three global satellite rainfall datasets (CHIRPS, PERSIANN-CDR and CPC) were evaluated for Fiji. All satellite products had reasonable correlations with station data, and CPC had the highest correlation with minimum error values. The Effective Drought Index (EDI), a useful index for understanding hydrological extremes, was then calculated. Thereafter, a canonical correlation analysis (CCA) was employed to forecast the EDI using sea surface temperature anomaly (SSTa) data. A high canonical correlation of 0.98 was achieved between the PCs of mean SST and mean EDI, showing the influence of ocean–atmospheric interactions on precipitation regimes in Fiji. CCA was used to perform a hind cast and a short-term forecast. The training stage produced a coefficient of determinant (R2) value of 0.83 and mean square error (MSE) of 0.11. The results in the testing stage for the forecast were more modest, with an R2 of 0.45 and MSE of 0.26. This easy-to-implement system can be a useful tool used by disaster management bodies to aid in enacting water restrictions, providing aid, and making informed agronomic decisions such as planting dates or extents.


2022 ◽  
Vol 9 ◽  
Author(s):  
Andrew D. Putt ◽  
Erin R. Kelly ◽  
Kenneth A. Lowe ◽  
Miguel Rodriguez ◽  
Terry C. Hazen

Penetration testing is a popular and instantaneous technique for subsurface mapping, contaminant tracking, and the determination of soil characteristics. While the small footprint and reproducibility of cone penetrometer testing makes it an ideal method for in-situ subsurface investigations at contaminated sites, the effects to local shallow groundwater wells and measurable influence on monitoring networks common at contaminated sites is unknown. Physical and geochemical parameters associated with cone penetrometer testing were measured from a transect of shallow groundwater monitoring wells adjacent to penetrometer testing. For wells screened above the depth of cone refusal, the physical advancement and retraction of the cone had a significant effect (p < 0.01) on water level for several pushes within 10 meters of a monitoring well, and a measured increase in specific conductivity. No effect on geochemistry or water level was observed in continuous monitoring data from wells screened below the depth of cone refusal, but variability in specific conductivity from these wells during penetration testing was only a fraction of the natural variation measured during precipitation events. Continuous measurements of specific conductivity and water level demonstrated that the effects of penetration testing have limited spatial and temporal distributions with a null effect post-testing.


2022 ◽  
Author(s):  
Tatiana Macé ◽  
Maitane Iturrate-Garcia ◽  
Céline Pascale ◽  
Bernhard Niederhauser ◽  
Sophie Vaslin-Reimann ◽  
...  

Abstract. The measurement of ammonia (NH3) in ambient air is a sensitive and priority topic due to its harmful effects on human health and ecosystems. NH3 emissions have continuously increased over the last century in Europe, because of intensive livestock practices and enhanced use of nitrogen-based fertilizers. European air quality monitoring networks monitor atmospheric NH3 amount fractions. However, the lack of stable reference gas mixtures (RGMs) at atmospheric amount fractions to calibrate NH3 analyzers is a common issue of the networks, which results in data that are not accurate, traceable and, thus, geographically comparable. In order to cover this lack, LNE developed, in close collaboration with the company 2M PROCESS, a gas reference generator to generate dynamically NH3 RGMs in air. The method is based on gas permeation and further dynamic dilution to obtain an amount fraction range between 1 and 400 nmol/mol. The calibration of the elements of the generator against LNE primary standards ensures the traceability of the RGMs to the international system of units. Furthermore, the highly accurate flow and oven temperature measurements of the reference generator, together with the associated calibration procedure defined by LNE, guarantee relative expanded uncertainties of the calibration of the NH3 analyzer calibrations lower than 2 % (coverage factor = 2). This result is very satisfactory considering the low NH3 amount fraction levels (1 to 400 nmol/mol) and the phenomena of adsorption and desorption, especially in the presence of traces of water on the surfaces in contact. A bilateral comparison was organized between METAS and LNE, consisting on the calibration of a PICARRO G2103 gas analyzer by both national metrology institutes (NMI). The results highlighted the good agreement between the NH3 reference generators developed by the two institutes and allowed to validate both LNE’s reference generator and calibration procedure. The development of the NH3 reference generator has already raised great interest within the French air quality monitoring networks (AASQA). Since the end of 2020, LNE calibrated several NH3 analyzers of the networks. These requests shows the interest of the AASQA in the development of this new gas reference generator to guarantee the traceability of measurements carried out on the French territory.


2022 ◽  
Author(s):  
Horim Kim ◽  
Michael Müller ◽  
Stephan Henne ◽  
Christoph Hüglin

Abstract. Low-cost sensors are considered as exhibiting great potential to complement classical air quality measurements in existing monitoring networks. However, the use of low-cost sensors poses some challenges. In this study, the behavior and performance of electrochemical sensors for NO and NO2 were determined over a longer operating period in a real-world deployment. After careful calibration of the sensors, based on co-location with reference instruments at a rural traffic site during six months and by using robust linear regression and random forest regression, the coefficient of determination of both types of sensors were high (R2 > 0.9) and the root mean square error (RMSE) of NO and NO2 sensors were about 6.8 ppb and 3.5 ppb, respectively, for 10-minute mean concentrations. The RMSE of the NO2 sensors, however, more than doubled, when the sensors were deployed without re-calibration for a one-year period at other site types (including urban background locations), where the range and the variability of air pollutant concentrations differed from the calibration site. This indicates a significant effect of the re-location of the sensors on the quality of their data. During deployment, we found that the NO2 sensors are capable of distinguishing general pollution levels, but they proved unsuitable for accurate measurements, mainly due to significant biases. In order to investigate the long-term stability of the original calibration, the sensors were re-installed at the calibration site after deployment. Surprisingly, the coefficient of determination and the RMSE of the NO sensor remained almost unchanged after more than one year of operation. In contrast, the performance of the NO2 sensors clearly deteriorated as indicated by a higher RMSE (about 7.5 ppb, 10-minute mean concentrations) and a lower coefficient of determination (R2 = 0.59).


10.6036/10370 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 39-45
Author(s):  
Zhigang Wang ◽  
Ji Li ◽  
Bo Li

Seismic source location is the most fundamental and most important problem in microseismic monitoring. However, only P wave has been mostly applied in the existing microseismic monitoring networks, with low location accuracy and poor stability of location result for the microseismic events occurring beyond monitoring networks. The seismic source location was implemented using P wave and S wave in this study to expand the effective monitoring area of a microseismic monitoring network and improve its location accuracy for microseismic events nearby the monitoring network. Then, the seismic source location mechanism using P-S wave was revealed through theoretical derivation and analysis. Subsequently, the program development and numerical simulation were combined to analyze and compare systematically the location effects of differently distributed monitoring networks, those consisting of different quantities of sensors, and those with S wave contained in some sensors under two circumstances: combination of P wave and S wave and single use of P wave. Results demonstrate that adding S wave in the plane enhances the accuracy control in the radius direction of the monitoring network. After S wave is included, the location accuracy within a certain area beyond the monitoring network is improved considerably, the effective monitoring area of the whole network is expanded, and the unstable location zones using only P wave are eliminated. The location results of differently distributed monitoring networks and the influence laws of the quantity of sensors constituting the networks on the location results are acquired. This study provides evidence for microseismic monitoring to realize accurate and stable location within a larger range. Keywords: seismic source location, P wave and S wave, mechanism, location effect


2022 ◽  
Author(s):  
Xia Na ◽  
Wang Cong ◽  
Peng Huaizhen ◽  
Zhao Zhongqiu ◽  
Chen Yuqing ◽  
...  

2021 ◽  
Author(s):  
Tim Henderson ◽  
Vincent Santucci ◽  
Tim Connors ◽  
Justin Tweet

A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities that may threaten or influence their stability and preservation. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) that represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. Mappable geologic units may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section or exposure area of the unit is designated as the type section or other category of stratotype (see “Definitions” below). The type section is an important reference exposure for a named geologic unit which presents a relatively complete and representative example for this unit. Geologic stratotypes are important both historically and scientifically, and should be available for other researchers to evaluate in the future.. The inventory of all geologic stratotypes throughout the 423 units of the NPS is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (e.g., geology, hydrology, climate), biological resources (e.g., flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network-level activities such as inventory, monitoring, research, and data management. Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory & Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic stratotypes within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this report for the Mojave Desert Inventory & Monitoring Network (MOJN). The goal of this project is to consolidate information pertaining to geologic type sections that occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers and to promote the preservation and protection of these important geologic landmarks and geologic heritage resources. The review of stratotype occurrences for the MOJN shows there are currently no designated stratotypes for Joshua Tree National Park (JOTR) or Manzanar National Historic Site (MANZ); Death Valley...


GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 84-91
Author(s):  
Yuriy Andrushchenko ◽  
◽  
Oleksandr Liashchuk ◽  

The aim of the work is to determine the possibility of using local seismological networks of nuclear power plants as elements of the seismological monitoring system of the territory of Ukraine. Estimation of local seismicity and specification of quantitative parameters of seismological influences is carried out on the basis of materials of seismological observations. Operational processing and analysis of seismic signals registered on the elements of local seismological networks of NPPs is carried out by the Main Center for Special Control of the State Space Agency of Ukraine (MCSC SSA of Ukraine). In the process of implementation of the “Seismic Hazard Assessment and Seismic Resistance Action Plan” of existing NPPs, seismic monitoring networks were deployed at Ukrainian NPPs. To date, the MCSC receives data from the local seismological networks of Rivne, Khmelnytsky and Zaporizhzhya NPPs in a continuous mode. The processing of geophysical information coming from the NPP to the FSC is carried out by the operational next shift of the center with the help of FSC hardware and software and provides reliable data on the parameters of seismic sources registered by stations, their location and energy characteristics. In total, in the period from 2017 to 2021, 36 local earthquakes were registered by NPP seismic networks in Ukraine. The epicenters of the vast majority of them are located within the Ivano-Frankivsk, Ternopil and Lviv regions. The experience of conducting instrumental observations at NPP seismic stations testifies to their high efficiency and possibility of use as full-fledged elements of the seismological monitoring system of the territory of Ukraine. According to the results of primary processing of seismic data of 2017-2021, a catalog of seismic events registered by NPP seismic stations was created. The system of interpretation of the obtained results was improved, which allowed to determine equally well local, regional and teleseismic events of different nature and energy level. The practical significance of the obtained results lies in their direct focus on solving a number of practical problems of processing and interpretation of seismological data. The use of NPP seismic stations as elements of the general system of seismological monitoring of Ukraine will increase the reliability of detection and localization of sources and the probability of correct identification of the nature of seismic phenomena, which in turn will improve the assessment of tectonic structures in Ukraine.


Sign in / Sign up

Export Citation Format

Share Document