distal enhancer
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 77)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Vol 23 (2) ◽  
pp. 849
Author(s):  
Markus V. Heppt ◽  
Anja Wessely ◽  
Eva Hornig ◽  
Claudia Kammerbauer ◽  
Saskia A. Graf ◽  
...  

The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Yudhishtar S. Bedi ◽  
Alexis N. Roach ◽  
Kara N. Thomas ◽  
Nicole A. Mehta ◽  
Michael C. Golding

Abstract Background Paternal lifestyle choices and male exposure history have a critical influence on the health and fitness of the next generation. Accordingly, defining the processes of germline programming is essential to resolving how the epigenetic memory of paternal experiences transmits to their offspring. Established dogma holds that all facets of chromatin organization and histone posttranslational modification are complete before sperm exits the testes. However, recent clinical and animal studies suggest that patterns of DNA methylation change during epididymal maturation. In this study, we used complementary proteomic and deep-sequencing approaches to test the hypothesis that sperm posttranslational histone modifications change during epididymal transit. Results Using proteomic analysis to contrast immature spermatozoa and mature sperm isolated from the mouse epididymis, we find progressive changes in multiple histone posttranslational modifications, including H3K4me1, H3K27ac, H3K79me2, H3K64ac, H3K122ac, H4K16ac, H3K9me2, and H4K20me3. Interestingly, some of these changes only occurred on histone variant H3.3, and most involve chromatin modifications associated with gene enhancer activity. In contrast, the bivalent chromatin modifications, H3K4me3, and H3K27me3 remained constant. Using chromatin immunoprecipitation coupled with deep sequencing, we find that changes in histone h3, lysine 27 acetylation (H3K27ac) involve sharpening broad diffuse regions into narrow peaks centered on the promoter regions of genes driving embryonic development. Significantly, many of these regions overlap with broad domains of H3K4me3 in oocytes and ATAC-seq signatures of open chromatin identified in MII oocytes and sperm. In contrast, histone h3, lysine 9 dimethylation (H3K9me2) becomes enriched within the promoters of genes driving meiosis and in the distal enhancer regions of tissue-specific genes sequestered at the nuclear lamina. Maturing sperm contain the histone deacetylase enzymes HDAC1 and HDAC3, suggesting the NuRD complex may drive some of these changes. Finally, using Western blotting, we detected changes in chromatin modifications between caput and caudal sperm isolated from rams (Ovis aries), inferring changes in histone modifications are a shared feature of mammalian epididymal maturation. Conclusions These data extend our understanding of germline programming and reveal that, in addition to trafficking noncoding RNAs, changes in histone posttranslational modifications are a core feature of epididymal maturation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0254466
Author(s):  
Ting-Yun Chen ◽  
Xiaoyun Li ◽  
Gillian C. Goobie ◽  
Ching-Hsia Hung ◽  
Tin-Kan Hung ◽  
...  

Relaxin/insulin-like family peptide receptor 1 (RXFP1) mediates relaxin’s antifibrotic effects and has reduced expression in the lung and skin of patients with fibrotic interstitial lung disease (fILD) including idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). This may explain the failure of relaxin-based anti-fibrotic treatments in SSc, but the regulatory mechanisms controlling RXFP1 expression remain largely unknown. This study aimed to identify regulatory elements of RXFP1 that may function differentially in fibrotic fibroblasts. We identified and evaluated a distal regulatory region of RXFP1 in lung fibroblasts using a luciferase reporter system. Using serial deletions, an enhancer upregulating pGL3-promoter activity was localized to the distal region between -584 to -242bp from the distal transcription start site (TSS). This enhancer exhibited reduced activity in IPF and SSc lung fibroblasts. Bioinformatic analysis identified two clusters of activator protein 1 (AP-1) transcription factor binding sites within the enhancer. Site-directed mutagenesis of the binding sites confirmed that only one cluster reduced activity (-358 to -353 relative to distal TSS). Co-expression of FOS in lung fibroblasts further increased enhancer activity. In vitro complex formation with a labeled probe spanning the functional AP-1 site using nuclear proteins isolated from lung fibroblasts confirmed a specific DNA/protein complex formation. Application of antibodies against JUN and FOS resulted in the complex alteration, while antibodies to JUNB and FOSL1 did not. Analysis of AP-1 binding in 5 pairs of control and IPF lung fibroblasts detected positive binding more frequently in control fibroblasts. Expression of JUN and FOS was reduced and correlated positively with RXFP1 expression in IPF lungs. In conclusion, we identified a distal enhancer of RXFP1 with differential activity in fibrotic lung fibroblasts involving AP-1 transcription factors. Our study provides insight into RXFP1 downregulation in fILD and may support efforts to reevaluate relaxin-based therapeutics alongside upregulation of RXFP1 transcription.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Hossein Moravej ◽  
Fatemeh Sadat Mirrashidi ◽  
Alireza Haghighi ◽  
Anis Amirhakimi ◽  
Homa Ilkhanipoor

: Biallelic variants in the pancreas-specific transcription factor 1A (PTF1A) gene are a rare cause of permanent neonatal diabetes. We report a case of neonatal diabetes with unique clinical manifestations. The clinical diagnosis of the affected infant was confirmed by insufficient endocrine and exocrine pancreas activity; however, the pancreas was normal in imaging. Molecular analyses identified a novel homozygous single nucleotide variant (Chr10, g.23508441T > G), affecting a highly conserved nucleotide within a distal enhancer of the PTF1A gene. The literature review showed that most of these patients had IUGR and imaging evidence of pancreatic agenesis or hypoplasia. We suggest that pancreatic imaging and evaluation of exocrine pancreas function can help early confirmation of the diagnosis in patients with permanent neonatal diabetes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pamela Himadewi ◽  
Xue Qing David Wang ◽  
Fan Feng ◽  
Haley Gore ◽  
Yushuai Liu ◽  
...  

Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named Hereditary Persistence of Fetal Hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


2021 ◽  
Author(s):  
Yuxiao Zhou ◽  
Siyuan Xu ◽  
Qiang Wu

Enhancers generate bidirectional noncoding enhancer RNAs that may regulate gene expression. At present, mechanisms of eRNA functions are not fully understood. Here, we report an antisense eRNA PEARL that is transcribed from the protocadherin α HS5-1 enhancer region. Through loss- and gain-of-function experiments with CRISPR/Cas9 DNA-fragment editing, CRISPRi, and CRISPRa strategies, in conjunction with ChIRP, MeDIP, and DRIP experiments, we find that PEARL regulates Pcdhα expression by forming local R-loop in situ within the HS5-1 enhancer region to promote long-distance chromatin interactions between distal enhancer and target promoters. These findings have important implications regarding mechanisms by which the HS5-1 enhancer regulates stochastic Pcdhα promoter choice in single cells in the brain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hua-Jun Wu ◽  
Alexandro Landshammer ◽  
Elena K. Stamenova ◽  
Adriano Bolondi ◽  
Helene Kretzmer ◽  
...  

AbstractPrecise control of mammalian gene expression is facilitated through epigenetic mechanisms and nuclear organization. In particular, insulated chromosome structures are important for regulatory control, but the phenotypic consequences of their boundary disruption on developmental processes are complex and remain insufficiently understood. Here, we generated deeply sequenced Hi-C data for human pluripotent stem cells (hPSCs) that allowed us to identify CTCF loop domains that have highly conserved boundary CTCF sites and show a notable enrichment of individual developmental regulators. Importantly, perturbation of such a boundary in hPSCs interfered with proper differentiation through deregulated distal enhancer-promoter activity. Finally, we found that germline variations affecting such boundaries are subject to purifying selection and are underrepresented in the human population. Taken together, our findings highlight the importance of developmental gene isolation through chromosomal folding structures as a mechanism to ensure their proper expression.


2021 ◽  
Author(s):  
Ting-Yun Chen ◽  
Xiaoyun Li ◽  
Gillian C Goobie ◽  
Ching-Hsia Hung ◽  
Hyle hamilton ◽  
...  

Relaxin/insulin-like family peptide receptor 1 (RXFP1) mediates relaxin’s antifibrotic effects and has reduced expression in the lung and skin of patients with fibrotic interstitial lung disease (fILD) including idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). This may explain the failure of relaxin-based anti-fibrotic treatments in SSc, but the regulatory mechanisms controlling RXFP1 expression remain largely unknown. This study aimed to identify regulatory elements of RXFP1 that may function differentially in fibrotic fibroblasts. We identified and evaluated a distal regulatory region of RXFP1 in lung fibroblasts using a luciferase reporter system. Using serial deletions, an enhancer upregulating pGL3-promoter activity was localized to the distal region between -584 to -242bp from the distal transcription start site (TSS). This enhancer exhibited reduced activity in IPF and SSc lung fibroblasts. Bioinformatic analysis identified two clusters of activator protein 1 (AP-1) transcription factor binding sites within the enhancer. Site-directed mutagenesis of the binding sites confirmed that only one cluster reduced activity (-358 to -353 relative to distal TSS). Co-expression of FOS in lung fibroblasts further increased enhancer activity. In vitro complex formation with a labeled probe spanning the functional AP-1 site using nuclear proteins isolated from lung fibroblasts confirmed a specific DNA/protein complex formation. Application of antibodies against JUN and FOS resulted in the complex alteration, while antibodies to JUNB and FOSL1 did not. Analysis of AP-1 binding in 5 pairs of control and IPF lung fibroblasts detected positive binding more frequently in control fibroblasts. Expression of JUN and FOS was reduced and correlated positively with RXFP1 expression in IPF lungs. In conclusion, we identified a distal enhancer of RXFP1 with differential activity in fibrotic lung fibroblasts involving AP-1 transcription factors. Our study provides insight into RXFP1 downregulation in fILD and may support efforts to reevaluate relaxin-based therapeutics alongside upregulation of RXFP1 transcription.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Prekovic ◽  
Karianne Schuurman ◽  
Isabel Mayayo-Peralta ◽  
Anna G. Manjón ◽  
Mark Buijs ◽  
...  

AbstractThe glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


2021 ◽  
Author(s):  
Sudarshan Pinglay ◽  
Milica Bulajic ◽  
Dylan P Rahe ◽  
Emily Huang ◽  
Ran Brosh ◽  
...  

Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modes controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce 'synthetic regulatory reconstitution', a novel conceptual framework for studying gene regulation and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130-170 kilobases each) to an ectopic location in the mouse genome. We find that a HoxA cluster lacking distal enhancers recapitulates correct patterns of chromatin remodeling and transcription in response to patterning signals, while distal enhancers are required for full transcriptional output. Synthetic regulatory reconstitution is a generalizable strategy to decipher the regulatory logic of gene expression in complex genomes.


Sign in / Sign up

Export Citation Format

Share Document