morphological transformation
Recently Published Documents


TOTAL DOCUMENTS

808
(FIVE YEARS 157)

H-INDEX

61
(FIVE YEARS 8)

2022 ◽  
Vol 170 ◽  
pp. 108511
Author(s):  
Yuanfan Dai ◽  
Bohua Sun ◽  
Yi Zhang ◽  
Xiang Li

Author(s):  
V. Sai Kumar ◽  
P. Hari Prasad Reddy ◽  
Ch. Rama Vara Prasad

Based on the strong evidence of case histories, this study focused on mineralogical and morphological changes of an artificial kaolinitic soil -Ball clay, when exposed to different concentrations of sodium hydroxide (0.1N, 1N, 4N, and 8N) under different curing periods (7, 28 and 100 days). Sediment volume tests are conducted on Ball clay with all combinations and results are analyzed with the help of analytical techniques. XRD and SEM studies are analyzed to understand the micro-level changes of alkali contaminated Ball clay. Mineralogical and morphological transmutations of Ball clay are investigated for 7, 28, and 100 days curing period. Results revealed new mineral formations like Sodalite under 4N and 8N concentrations of NaOH with 100 days interactions are well observed. The morphological transformation from needle shape to pellet shape is clear evidence of the rate of dissolution and precipitation of minerals under 100 days curing periods.


2021 ◽  
Vol 923 (1) ◽  
pp. 46
Author(s):  
Shuang Liu ◽  
Yizhou Gu ◽  
Qirong Yuan ◽  
Shiying Lu ◽  
Min Bao ◽  
...  

Abstract To figure out the effect of stellar mass and local environment on morphological transformation and star formation quenching in galaxies, we use the massive (M * ≥ 1010 M ⊙) galaxies at 0.5 ≤ z ≤ 2.5 in five fields of 3D-HST/CANDELS. Based on the UVJ diagnosis and the possibility of possessing a spheroid, our sample of massive galaxies is classified into four populations: quiescent early-type galaxies (qEs), quiescent late-type galaxies (qLs), star-forming early-type galaxies (sEs), and star-forming late-type galaxies (sLs). It is found that the quiescent fraction is significantly elevated at the high ends of mass and local environmental overdensity, which suggests a clear dependence of quenching on both mass and local environment. Over cosmic time, the mass dependence of galaxy quiescence decreases while the local environment dependence increases. The early-type fraction is found to be larger only at the high-mass end, indicating an evident mass dependence of morphological transformation. This mass dependence becomes more significant at lower redshifts. Among the four populations, the fraction of active galactic nuclei (AGNs) in the qLs peaks at 2 < z ≤ 2.5, and rapidly declines with cosmic time. The sEs are found to have higher AGN fractions of 20%–30% at 0.5 ≤ z < 2 . The redshift evolution of AGN fractions in the qLs and sEs suggests that AGN feedback could have played important roles in the formation of the qLs and sEs.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3422
Author(s):  
Haokun Liu ◽  
Ying Zhao ◽  
Yanfang Wu ◽  
Yutong Yan ◽  
Xiaoe Zhao ◽  
...  

Mastitis is a common and important clinical disease in ruminants. This may be associated with inflammatory fibrosis if not treated promptly. Inflammation-derived fibrosis is usually accompanied by epithelial–mesenchymal transition (EMT) in epithelial cells. However, the precise molecular mechanism underlying mastitis-induced fibrosis remains unclear. Nuclear factor kappa-B (NF-κB) and Snail are key regulators of EMT. In this study, primary goat mammary epithelial cells (GMECs) were treated with 10 μg/mL lipopolysaccharide (LPS) for 14 d to mimic the in vivo mastitis environment. After LPS treatment, the GMECs underwent mesenchymal morphological transformation and expressed mesenchymal cell markers. Snail expression was induced by LPS and was inhibited by suppression of the TLR4/NF-κB signaling pathway. Snail knockdown alleviated LPS-induced EMT and altered the expression of inflammatory cytokines. Finally, we found that the expression of key molecules of the TLR4/NF-κB/Snail signaling pathway was increased in mastitis tissues. These results suggest that Snail plays a vital role in LPS-induced EMT in GMECs and that the mechanism is dependent on the activation of the TLR4/NF-κB signaling pathway.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1478
Author(s):  
Zhenwei Li ◽  
Mengli Jia ◽  
Xiaoli Yang ◽  
Mengying Xu

The accurate segmentation of retinal blood vessels in fundus is of great practical significance to help doctors diagnose fundus diseases. Aiming to solve the problems of serious segmentation errors and low accuracy in traditional retinal segmentation, a scheme based on the combination of U-Net and Dense-Net was proposed. Firstly, the vascular feature information was enhanced by fusion limited contrast histogram equalization, median filtering, data normalization and multi-scale morphological transformation, and the artifact was corrected by adaptive gamma correction. Secondly, the randomly extracted image blocks are used as training data to increase the data and improve the generalization ability. Thirdly, stochastic gradient descent was used to optimize the Dice loss function to improve the segmentation accuracy. Finally, the Dense-U-net model was used for segmentation. The specificity, accuracy, sensitivity and AUC of this algorithm are 0.9896, 0.9698, 0.7931, 0.8946 and 0.9738, respectively. The proposed method improves the segmentation accuracy of vessels and the segmentation of small vessels.


2021 ◽  
Author(s):  
Mehdi Sadat-Shojai ◽  
Milad Asadnia

Abstract Electrospun fibers have high structural similarity to the extracellular matrix (ECM) of natural bone. Some researchers have tried to fabricate cellulose nanofibers using electrospinning method, although the fabricated fibers usually exhibited a non-uniform texture. Moreover, the fabricated mats always suffer from low biological, mechanical and structural properties. Thus, the objective of this study was first to produce a naturally occurring cellulose from banana pseudo-stem through the combination of liquefaction and bleaching processes. The native cellulose was then tried to electrospun in order to determine how a systematic approach based on a Taguchi L9 orthogonal array can be used to fabricate a defect-free fibrous mat. Finally, the electrospun cellulose mats incorporated with hydroxyapatite (HA) nanoparticles were fabricated to generate a new fibrous nanocomposite with enhanced biological and mechanical characteristics. The results revealed that among the electrospinning parameters, cellulose concentration of solution and applied voltage had the greatest effect on the morphology of the fibers. The morphological characterization of the fibrous nanocomposites showed that fibrous cellulose/HA mats had a uniform fiber texture without any significant bead, splashing or particle agglomeration. According to the mechanical tests, the samples containing the higher concentration of HA had a significantly higher elastic modulus and tensile strength. The results obtained from bioactivity analysis indicated an interesting morphological transformation into a flake-like structure which confirmed the high bioactivity of the scaffolds. Accordingly, encapsulation of HA nanoparticles inside the cellulose in the fibrous form can be promising for bone regeneration applications.


Author(s):  
Zhijun Ma ◽  
Mengge Liu ◽  
Wei Yang ◽  
Zhong Yang ◽  
Yongchun Guo ◽  
...  

Al-Si casting alloys are the most commonly used materials for piston alloys. The coefficient of thermal expansion is the key property of a piston material for improving the overall performance and service life of an engine. In the present study, the relationship between the morphology of the excess silicon phase and the coefficient of thermal expansion of Al-Si binary casting alloys was discussed. Optical and scanning electron microscopy were utilized to observe the morphology of the excess silicon phase in the Al-Si binary casting alloys before and after solution aging treatment. The results showed that the morphology of the excess silicon phase significantly influenced the coefficient of thermal expansion of the Al-Si binary casting alloys. After solution aging treatment, the coefficient of thermal expansion of the Al-Si binary casting alloys increased due to the rounding and granulating of the excess silicon phase precipitated during the casting process and decreased due to the precipitation of the finely dispersed Si phase in the α-Al matrix. The change in the coefficient of thermal expansion depended on which of the two kinds of morphological transformation of the excess silicon phase is dominant.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7420
Author(s):  
Gabriele Barrera ◽  
Federica Celegato ◽  
Matteo Cialone ◽  
Marco Coïsson ◽  
Paola Rizzi ◽  
...  

Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and “top-down” nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150–300 nm and 150–200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film.


2021 ◽  
Vol 7 (42) ◽  
Author(s):  
Agata Nyga ◽  
Jose J. Muñoz ◽  
Suze Dercksen ◽  
Giulia Fornabaio ◽  
Marina Uroz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document