total oxidation
Recently Published Documents


TOTAL DOCUMENTS

656
(FIVE YEARS 155)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 116 ◽  
pp. 114-124
Author(s):  
Xiao Chen ◽  
Yong Wang ◽  
Jianyu Li ◽  
Zhongheng Hu ◽  
Ying Zhou ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Roberto Fiorenza ◽  
Roberta Agata Farina ◽  
Enrica Maria Malannata ◽  
Francesca Lo Presti ◽  
Stefano Andrea Balsamo

Solar photothermo-catalysis is a fascinating multi-catalytic approach for volatile organic compounds (VOCs) removal. In this work, we have explored the performance and the chemico-physical features of non-critical, noble, metal-free MnOx-ZrO2 mixed oxides. The structural, morphological, and optical characterizations of these materials pointed to as a low amount of ZrO2 favoured a good interaction and the ionic exchange between the Mn and the Zr ions. This favoured the redox properties of MnOx increasing the mobility of its oxygens that can participate in the VOCs oxidation through a Mars-van Krevelen mechanism. The further application of solar irradiation sped up the oxidation reactions promoting the VOCs total oxidation to CO2. The MnOx-5 wt.%ZrO2 sample showed, in the photothermo-catalytic tests, a toluene T90 (temperature of 90% of conversion) of 180 °C and an ethanol T90 conversion to CO2 of 156 °C, 36 °C, and 205 °C lower compared to the thermocatalytic tests, respectively. Finally, the same sample exhibited 84% toluene conversion and the best selectivity to CO2 in the ethanol removal after 5 h of solar irradiation at room temperature, a photoactivity similar to the most employed TiO2-based materials. The as-synthetized mixed oxide is promising for an improved sustainability in both catalyst design and environmental applications.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 274-282
Author(s):  
S. Zio ◽  
B. Tarnagda ◽  
O. Zongo ◽  
A. Boro ◽  
D. Elothmani ◽  
...  

Edible oils produced and consumed in Burkina Faso often do not meet established standards. The objective of this study was to evaluate the total gossypol level of refined cottonseeds oils and the oxidation state of crude peanut oils and refined cottonseeds oils in Burkina Faso to determine the impact on consumer health. A total of 61 samples including crude peanut oils and refined cottonseeds oils were collected in Ouagadougou, Bobo Dioulasso and surrounding areas. Total Gossypol and p-Anisidine value were determined by spectrophotometry. Peroxide value, acid value, soap residual value and mineral oils were determined by chemical methods. Total oxidation (Totox) value was determined by mathematical prediction. Overall, Gossypol total average of cottonseeds oils analyzed in this study was 0.032%. The p-Anisidine value average was 1.80 for refined cottonseeds oils and 11.65 for crude peanut oils. The Totox averages were respectively 19.37 and 28.36 for refined cottonseeds and crude peanut oils. The average peroxide values for refined cottonseeds oils and peanut crude oils were 8.52 and 8.33 mEq O2/Kg, respectively (p<0.05). The average acid values were 0.27 and 1.95 mg KOH/g for refined cottonseeds oils and crude peanut oils, respectively (p<0.05). None of the oils showed any mineral oil trace. The average residual soap values were respectively 1.47 and 8.32 ppm for peanut oils and cottonseeds oils (p<0.05). The majority values determined conformed to the Codex Alimentarius standard despite some cases of non-compliance. It is essential to improve the processes of oils production and conservation in order to have quality oils to guarantee the health of the consumer.


2021 ◽  
Vol 22 (2) ◽  
pp. 332-343
Author(s):  
Ahmed Raza Sidhu ◽  
saba Naz ◽  
Sarfaraz Ahmed Mahesar ◽  
Abdul Rauf Khaskheli

The objective of our study is to monitor the oxidative stability of different cultivars of almonds (Australian, American and Iranian) kernels/oil during the 12th month of storage at room temperature. Several physicochemical parameters free fatty acids (FFA), peroxide value (PV), panisidine value (p-AV), total oxidation value (TOTOX), Fourier transforms infrared spectrophotometer (FT-IR) and Gas chromatography Mass spectrometry (GC-MS) were used to check the oxidative stability of almond kernel. According to the results, effects of room temperature in the early stages of oxidation, primary oxidation products remained stable, whereas secondary oxidation product levels continued to rise in the later stages. In general, FFA increased with increasing storage time, the range was observed (0.21-0.97 %), PV (1.31-16.23 meqO2/kg), p-AV (2.21-19.35), TOTOX (4.83-15.81), respectively. During storage at room temperature for up to 12th months, there was no significant shifting of the spectral band in the FT-IR study. The most bounteous fatty acid in the almond oil range was observed oleic acid C18:0 (71.01-79.56 %) followed by linoleic acid C18:2 (13.13–20.65 %), palmitic acid C16:0 (4.86-5.67 %), stearic acid C18:0 (1.20-3.81 %), and palmitoleic acid C16:1(0.21-0.47 %) in all three samples during storage. These results suggest that almond oil during the 12th month of storage keeps its good chemical properties.


2021 ◽  
Author(s):  
Joël Thanwerdas ◽  
Marielle Saunois ◽  
Isabelle Pison ◽  
Didier Hauglustaine ◽  
Antoine Berchet ◽  
...  

Abstract. Atmospheric methane (CH4) concentrations have been rising since 2007, resulting from an imbalance between CH4 sources and sinks. The CH4 budget is generally estimated through top-down approaches using CH4 observations as constraints. The atmospheric isotopic CH4 signal, δ13C(CH4), can also provide additional constraints and helps to discriminate between emission categories. The oxidation by chlorine (Cl) likely contributes less than 5 % to the total oxidation of atmospheric CH4. However, the Cl sink is highly fractionating, and thus strongly influences δ13C(CH4). As inversion studies do not prescribe the same Cl fields to constrain CH4 budget, it can lead to discrepancies between estimates. To quantify the influence of the Cl concentrations on CH4, δ13C(CH4) and CH4 budget estimates, we perform multiple sensitivity simulations using three Cl fields with concentrations that are realistic with regard to recent literature and one Cl field with concentrations that are very likely to be overestimated. We also test removing the tropospheric and the entire Cl sink in other sensitivity simulations. We find that the realistic Cl fields tested here are responsible for between 0.3 % and 1.8 % of the total chemical CH4 sink in the troposphere and between 1.0 % and 1.2 % in the stratosphere. Prescribing these different Cl amounts in surface-based inversions can lead to differences in global CH4 source adjustments of up to 12.3 TgCH4.yr−1. We also find that the globally-averaged isotopic signature of the CH4 sources inferred by a surface-based inversion assimilating δ13C(CH4) observations would decrease by 0.53 ‰ for each additional percent of contribution from the tropospheric Cl sink to the total sink. Finally, our study shows that CH4 seasonal cycle amplitude is modified by less than 1–2 % but δ13(CH4) seasonal cycle amplitude can be modified by up to 10–20 %, depending on the latitude.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1461
Author(s):  
Kieran Aggett ◽  
Thomas E. Davies ◽  
David J. Morgan ◽  
Dan Hewes ◽  
Stuart H. Taylor

CeO2 catalysts were prepared by a precipitation method using either (NH4)2Ce(NO3)6 or Ce(NO3)3, as CeIV or CeIII precursors respectively. The influence of the different precursors on catalytic activity was evaluated for the total oxidation of propane with water present in the feed. The catalyst prepared using the CeIV precursor was more active for propane total oxidation. The choice of precursor influenced catalyst properties such as surface area, reducibility, morphology, and active oxygen species. The predominant factor associated with the catalytic activity was related to the formation of either CeO2.nH2O or Ce2(OH)2(CO3)2.H2O precipitate species, formed prior to calcination. The formation of CeO2.nH2O resulted in enhanced surface area which was an important factor for controlling catalyst activity.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1453
Author(s):  
Květa Jirátová ◽  
Roman Perekrestov ◽  
Michaela Dvořáková ◽  
Jana Balabánová ◽  
Martin Koštejn ◽  
...  

Magnetron sputtering is an advantageous method for preparing catalysts supported on stainless steel meshes. Such catalysts are particularly suitable for processes carried out at high space velocities. One of these is the catalytic total oxidation of volatile organic compounds (VOC), economically feasible and environmentally friendly method of VOC abatement. The reactive radio frequency (RF) magnetron sputtering of Mn and Co + Mn mixtures in an oxidation Ar + O2 atmosphere was applied to form additional thin oxide coatings on cobalt oxide layers prepared by electrochemical deposition and heating on stainless steel meshes. Time of the RF magnetron sputtering was changed to obtain MnOx and CoMnOx coatings of various thickness (0.1–0.3 µm). The properties of the supported CoOx–MnOx and CoOx–CoMnOx catalysts were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), temperature programmed reduction (H2-TPR), Fourier-transform infrared (FTIR) and Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The catalytic activity was investigated in the deep oxidation of ethanol, which was employed as a model VOC. According to the specific activities (amount of ethanol converted per unit mass of metal oxides per hour), the performance of CoOx–MnOx catalysts was higher than that of CoOx–CoMnOx ones. The catalysts with the smallest layer thickness (0.1 µm) showed the highest catalytic activity. Compared to the commercial pelletized Co–Mn–Al mixed oxide catalyst, the sputtered catalysts exhibited considerably higher (23–87 times) catalytic activity despite the more than 360–570 times lower content of the Co and Mn active components in the catalytic bed.


Sign in / Sign up

Export Citation Format

Share Document