multicast communication
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-27
Author(s):  
Gaurav Singal ◽  
Vijay Laxmi ◽  
Manoj Singh Gaur ◽  
D. Vijay Rao ◽  
Riti Kushwaha ◽  
...  

Multicast communication plays a pivotal role in Edge based Mobile Ad hoc Networks (MANETs). MANETs can provide low-cost self-configuring devices for multimedia data communication that can be used in military battlefield, disaster management, connected living, and public safety networks. A Multicast communication should increase the network performance by decreasing the bandwidth consumption, battery power, and routing overhead. In recent years, a number of multicast routing protocols (MRPs) have been proposed to resolve above listed challenges. Some of them are used for dynamic establishment of reliable route for multimedia data communication. This article provides a detailed survey of the merits and demerits of the recently developed techniques. An ample study of various Quality of Service (QoS) techniques and enhancement is also presented. Later, mesh topology-based MRPs are classified according to enhancement in routing mechanism and QoS modification. This article covers the most recent, robust, and reliable QoS-aware mesh based MRPs, classified on the basis of their operational features, and pros and cons. Finally, a comparative study has been presented on the basis of their performance parameters on the proposed protocols.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3002
Author(s):  
Bo Li ◽  
Jinlin Wang ◽  
Xiaoyong Zhu ◽  
Jiali You ◽  
Linlin Hu

Many information-centric services have emerged, such as IPTV and video conferencing. These services put a lot of demands on scalable multicast communication. However, traditional IP multicast has low adoption because of its poor scalability. Therefore, some stateless multicast methods were proposed, which encapsulate the destination’s information into the packet header without requiring routers to maintain the multicast forwarding state. However, stateless multicast also faces some problems, such as ingress router overload, high forwarding overhead, packet redundancy, etc. In addition, most multicast methods cannot optimize the multicast tree because the multicast flow is simply forwarded along the shortest path tree from the source to receivers. This paper proposes an Adaptive Hierarchical Hybrid Multicast (AHHM) based on Information-Centric Networking. To balance the forwarding states and forwarding overhead, AHHM is designed as a two-layer structure, in which the upper layer establishes a stateful main tree and the lower layer establishes several stateless sub trees. The router on the main tree is defined as the multicast join node (MJN), and AHHM uses the Name Resolution System to maintain the mapping between each multicast group name and corresponding MJNs. To optimize the multicast transmission path, we designed the minimum cost selection strategy for users to select the appropriate MJN to join. Simulation results show that compared with Source-Specific Multicast (SSM) and Bit Index Explicit Replication (BIER), AHHM can not only reduce the multicast forwarding states but also reduce the control overhead and link load.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gururaj Bijur ◽  
M. Ramakrishna ◽  
Karunakar A. Kotegar

AbstractDynamic traffic of multicast communication in the Software Defined Network environment focused less though it is more natural and practical. In multicast communication, the traffic is dynamic due to the dynamic group memberships (i.e., participants join and leave the group anytime), which are not explored much in the previous research works. The multicast in dynamic traffic requires a method to handle dynamic group membership and minimum tree alteration for every join and leave of participants from the multicast group. This paper proposes a multicast tree construction algorithm, which considers receiving devices and network capability as base parameters to construct the multicast path. The proposed routing method uses Dijkstra’s Shortest Path algorithm for initial tree formation, identifies a multicast path, and processes the Shortest Path Tree to reduce the overall hop count and path cost. The multicast tree generated by the proposed enables the dynamic join and leaves of participating devices with reduced tree alteration using more common paths to reach the devices. The implementation and results show that the proposed method works efficiently in resource utilization with a reduced hop count and quality for multicast communication in static and dynamic scenarios. Also, the results demonstrate that the proposed method generates a stable common path for multicast communication.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2355
Author(s):  
Fraser Orr ◽  
Muhammad Nouman Nafees ◽  
Neetesh Saxena ◽  
Bong Jun Choi

The security of communication protocols in the smart grid system is a crucial concern. An adversary can exploit the lack of confidentiality and authentication mechanism to cause damaging consequences. In the substation automation systems that rely on multicast communication between various intelligent electronic devices, the lack of security features in the standard IEC61850 and IEC62351 can invite attackers to manipulate the integrity of the employed publisher–subscriber communication paradigm to their advantage. Consequently, many researchers have introduced various approaches offering authenticity and confidentiality. However, such schemes and methods for the aforesaid standards have computational limitations in compliance with the stringent timing requirements of specific applications in the smart grid. In this paper, we propose an approach that can fully secure the publisher–subscriber communication against confidentiality attacks. In this direction, we develop a demo tool to validate the performance of our proposed security approach for potential factors such as timing requirements and the size of the messages. Finally, we evaluate our scheme considering the requirements of the GOOSE, SMV, and MMS protocols in the substation automation systems.


2021 ◽  
Author(s):  
Xing-Bo Pan ◽  
Xiu-Bo Chen ◽  
Gang Xu ◽  
Zhao Dou ◽  
Zong-Peng Li ◽  
...  

2021 ◽  
Vol 18 (3) ◽  
pp. 39-51
Author(s):  
Weiping Shi ◽  
Jiayu Li ◽  
Guiyang Xia ◽  
Yuntian Wang ◽  
Xiaobo Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document