small hydropower
Recently Published Documents


TOTAL DOCUMENTS

740
(FIVE YEARS 272)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 56 ◽  
pp. 155-162
Author(s):  
Korina-Konstantina Drakaki ◽  
Georgia-Konstantina Sakki ◽  
Ioannis Tsoukalas ◽  
Panagiotis Kossieris ◽  
Andreas Efstratiadis

Abstract. Motivated by the challenges induced by the so-called Target Model and the associated changes to the current structure of the energy market, we revisit the problem of day-ahead prediction of power production from Small Hydropower Plants (SHPPs) without storage capacity. Using as an example a typical run-of-river SHPP in Western Greece, we test alternative forecasting schemes (from regression-based to machine learning) that take advantage of different levels of information. In this respect, we investigate whether it is preferable to use as predictor the known energy production of previous days, or to predict the day-ahead inflows and next estimate the resulting energy production via simulation. Our analyses indicate that the second approach becomes clearly more advantageous when the expert's knowledge about the hydrological regime and the technical characteristics of the SHPP is incorporated within the model training procedure. Beyond these, we also focus on the predictive uncertainty that characterize such forecasts, with overarching objective to move beyond the standard, yet risky, point forecasting methods, providing a single expected value of power production. Finally, we discuss the use of the proposed forecasting procedure under uncertainty in the real-world electricity market.


2022 ◽  
Vol 1211 (1) ◽  
pp. 012012
Author(s):  
Y Y Zakharov ◽  
A R Lepeshkin

Abstract In recent years and in many countries the economic development of distant regions is increasingly dependent on energy resources. This fact makes the world scientific community pay more attention to the renewable energy sources. Special attention is paid to the solar, wind and small hydropower for electrical consumers who have no possibility to connect to the central power supply lines. In the countries that have water resources the financial support is given to the development of small and micro hydropower stations. The present work presents the results of the research on the improved method of calculation of water-diverting structures of low-head hydroelectric power plant with an installed cross-jet hydro turbine that is actual for the power supply of small power consumers. The presented method can be used for the preliminary analysis of morphometric characteristics of water course as well as the basic parameters of a cross-jet hydro turbine.


Author(s):  
Badhan Saha ◽  
Mazharul Islam ◽  
Khondoker Nimul Islam ◽  
Jubair Naim ◽  
Md Shahriar Farabi

A small hydropower plant is an environment-friendly renewable energy technology. The run-of-river type gravitational water vortex turbine can be designed to produce electricity at sites with low water heads. In this study, an experimental investigation was undertaken on this type of turbine with a water tank and a runner which is connected to a shaft. At the end of the shaft, a rope brake was attached to measure the output power, torque and overall efficiency of the vortex turbine by varying flow rates. The designed vortex turbine can achieve an overall efficiency of . The experimental results were validated with available data in the literature and theories associated with the turbine. The results also showed that the flow rate plays a vital role in generating power, torque as well as overall efficiency. The project was completed using local resources and technologies. Moreover, as water is used as the input power, this project is eco-friendly which has no adverse effect on the environment.


2021 ◽  
Vol 5 (2) ◽  
pp. 149-156
Author(s):  
Andrej Lipej ◽  
Boro Popovski

Hydro energy still occupies an important place among renewable energy sources. In special operating conditions, Pelton turbines are irreplaceable and can be used for extremely small hydropower plants and also large hydro power plants. Pelton turbines can operate with high head and relatively small flow rates. In many cases, the height differences of the water are very large. Sometimes it is necessary to stop the operation of the turbine very quickly and the consequences of water hammer can be very severe. The responsible part to minimize the consequences of this phenomena is jet deflector, which can be in two different technical designs. The steps for 3-D geometry definition, pre-processing and post-processing, flow modelling and FEM analysis are presented. In the paper is presented the new optimized design of push-out jet deflector shape. Optimization consider 3-D CFD analysis of free surface flow and stress analysis. The main goal of the research was to minimize the influence of all force components on the torque of deflector servomotor. The final results present the geometry of the deflector, with a significant reduction in the stresses and deformations. These have been achieved with a crucial reduction in the hydrodynamic force and torque.


2021 ◽  
Vol 13 (24) ◽  
pp. 14001
Author(s):  
Charalampos Skoulikaris

Renewable energy sources, due to their direct (e.g., wind turbines) or indirect (e.g., hydropower, with precipitation being the generator of runoff) dependence on climatic variables, are foreseen to be affected by climate change. In this research, two run-of-river small hydropower plants (SHPPs) located at different water districts in Greece are being calibrated and validated, in order to be simulated in terms of future power production under climate change conditions. In doing so, future river discharges derived by the forcing of a hydrology model, by three Regional Climate Models under two Representative Concentration Pathways, are used as inputs for the simulation of the SHPPs. The research concludes, by comparing the outputs of short-term (2031–2060) and long-term (2071–2100) future periods to a reference period (1971–2000), that in the case of a significant projected decrease in river discharges (~25–30%), a relevant important decrease in the simulated future power generation is foreseen (~20–25%). On the other hand, in the decline projections of smaller discharges (up to ~15%) the generated energy depends on the intermonthly variations of the river runoff, establishing that runoff decreases in the wet months of the year have much lower impact on the produced energy than those occurring in the dry months. The latter is attributed to the non-existence of reservoirs that control the operation of run-of-river SHPPs; nevertheless, these types of hydropower plants can partially remediate the energy losses, since they are taking advantage of low flows for hydropower production. Hence, run-of-river SHPPs are designated as important hydro-resilience assets against the projected surface water availability decrease due to climate change.


Author(s):  
Junir Antônio Lutinski ◽  
Milton Carlos De Filtro ◽  
Leandro Baucke ◽  
Fernanda Emanuela Dorneles ◽  
Cladis Juliana Lutinski ◽  
...  

Current energy production has been the subject of studies on environmental impacts and the need to adequately understand that the relationship to biodiversity loss is growing. One of the ways of assessing environmental changes is the use of bioindicator species, and ants represent an alternative in this regard. This study aimed to evaluate ant assemblages occurring in different environments in areas under the direct influence of two small hydropower plants (SHPP). Sampling was carried out using pitfall traps in forest and agricultural fragments, as well as pasture areas, along the Andrada River, municipality of Cascavel, state of Paraná, in July 2016 and March 2017. The sampled ant assemblages were evaluated for richness, abundance, and composition. The rarefaction analysis was used to compare the richness sampled in the two areas under direct influence. Abundance was analyzed based on the number of occurrences. The nonmetric multidimensional scaling (NMDS) was applied to test whether the abundance and composition of ant assemblages differ at the same site when sampled in both seasons. In total, 63 species belonging to 23 genera and 6 subfamilies were identified. The subfamily Myrmicinae was the most speciesrich (S = 25), followed by the subfamily Formicinae (S = 21). The most species-rich genus was Camponotus (S = 15) followed by Pheidole (S =11). A total of 41.3% richness was registered concurrently in the two assemblages. The study contributes to the expansion of knowledge of the ant fauna occurring in the state of Paraná and serves as a basis for monitoring impacts caused by the implementation of SHPP and other developments.


2021 ◽  
Vol 82 (3) ◽  
pp. 204-206
Author(s):  
Aleksey Benderev ◽  
Nikolay Stoyanov ◽  
Stefan Dimovski ◽  
Svetlana Bratkova ◽  
Boyka Mihaylova

The presented study is aimed towards determining the reasons for manganese pollution of drinking water extracted from the terrace of Vacha River. The results show that this is due to the seepage of from the artificial lake, formed after the construction of a small hydropower plant. Another possible reason is the natural accumulation in the upper parts of the river terrace of poorly soluble in water manganese compounds that turn into soluble ones as a result of changes in the redox environment, which take place in the conditions of very intensive groundwater extraction.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012072
Author(s):  
L Bytčanková

Abstract The construction of shaft intake structures in Slovakia has increased. The shaft intake structures overcome significant vertical height over short horizontal distance. In their front horizontal section, the water flows with free surface, then in the vertical section the flow changes its direction and character to a pressurized flow. The flow of water in these shaft intake structures is therefore very complicated. A hydraulically suitable design of the intake structure is associated with achieving the required parameters of the small hydropower plant (SHPP), but due to the reduction of project costs, the shapes of shaft intake structures of SHPP are often not correctly hydraulically designed. One of the important aspects is the distribution of flow velocity of these intake structures. Uneven distribution of flow velocity causes negative effects on turbine performance. Therefore, the investigation of the effects of shaft intake structure design on flow velocity distribution has been realized. The velocity field at a shaft intake of a small hydropower plant was investigated on a physical model in a hydraulic laboratory using the PIV (Particle Image Velocimetry) method. The PIV measurements were realized for different shaft heights and proved negative effects of the design on the flow homogeneity in the turbine intake.


Sign in / Sign up

Export Citation Format

Share Document