mimo detection
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 129)

H-INDEX

32
(FIVE YEARS 6)

2021 ◽  
Vol 66 (12) ◽  
pp. 1460-1469
Author(s):  
M. G. Bakulin ◽  
V. B. Kreindelin ◽  
D. Yu. Pankratov ◽  
A. G. Stepanova
Keyword(s):  

2021 ◽  
Author(s):  
SOURAV CHAKRABORTY ◽  
Nirmalendu Bikas Sinha ◽  
Monojit Mitra

Abstract This paper presents a low complexity pairwise layered tabu search (PLTS) based detection algorithm for a large-scale multiple-input multiple-output (MIMO) system. The proposed algorithm can compute two layers simultaneously and reduce the effective number of tabu searches. A metric update strategy is developed to reuse the computations from past visited layers. Also, a precomputation technique is adapted to reduce the redundancy in computation within tabu search iterations. Complexity analysis shows that the upper bound of initialization complexity in the proposed algorithm reduces from O(Nt4) to O(Nt3). The detection performance of the proposed detector is almost the same as the conventional complex version of LTS for 64QAM and 16QAM modulations. However, the proposed detector outperforms the conventional system for 4QAM modulation, especially in 16x16 and 8x8 MIMO. Simulation results show that the per cent of complexity reduction in the proposed method is approximately 75% for 64x64, 64QAM and 85% for 64x64 16QAM systems to achieve a BER of 10-3. Moreover, we have proposed a layer-dependent iteration number that can further reduce the upper bound of complexity with minor degradation in detection performance.


2021 ◽  
Author(s):  
Shuaijun Li ◽  
Hongbing Qiu ◽  
lin zheng ◽  
Chao Yang

Abstract Noncoherent multiple-input multiple-output (MIMO)detection in fast fading environments has received attention in recent years since less influence by factors such as phase fluctuations and the low requirements for channel estimation and synchronization. Spatial MFSK modulation with energy detection is different from conventional noncoherent MIMO in that it can obtain higher spatial multiplexing, but with the introduction of the nonlinear square-law operation, the analysis of its detection performance needs to be solved. This paper analyzes the theoretical symbol error rate (SER) performance of the Spatial MFSK modulation with energy detection. The noise of the MIMO system by energy detection conform to the generalized gamma distribution. Based on this distribution, the optimal decision rule of the system and the theoretical SER formula are derived. Numerical results show that the theoretical SER formula fits well with the simulation results of the system under the condition of high signal-to-noise ratio (SNR).


Author(s):  
Alex M. Mussi ◽  
Taufik Abrão

AbstractA neighborhood-restricted mixed Gibbs sampling (MGS)-based approach is proposed for low-complexity high-order modulation large-scale multiple-input multiple-output (LS-MIMO) detection. The proposed LS-MIMO detector applies a neighborhood limitation (NL) on the noisy solution from the MGS at a distance d — thus, named d-simplified MGS (d-sMGS) — in order to mitigate its impact, which can be harmful when a high-order modulation is considered. Numerical simulation results considering 64-QAM demonstrated that the proposed detection method can substantially improve the MGS algorithm convergence, whereas no extra computational complexity per iteration is required. The proposed d-sMGS-based detector suitable for high-order modulation LS-MIMO further exhibits improved performance × complexity tradeoff when the system loading is high, i.e., when $\frac {K}{N}\geq 0.75$ K N ≥ 0.75 . Also, with increasing the number of dimensions, i.e., increasing number of antennas and/or modulation order, a smaller restriction of 2-sMGS was shown to be a more interesting choice than 1-sMGS.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yongzhi Yu ◽  
Jianming Wang ◽  
Limin Guo

The massive multiple-input multiple-output (MIMO) technology is one of the core technologies of 5G, which can significantly improve spectral efficiency. Because of the large number of massive MIMO antennas, the computational complexity of detection has increased significantly, which poses a significant challenge to traditional detection algorithms. However, the use of deep learning for massive MIMO detection can achieve a high degree of computational parallelism, and deep learning constitutes an important technical approach for solving the signal detection problem. This paper proposes a deep neural network for massive MIMO detection, named Multisegment Mapping Network (MsNet). MsNet is obtained by optimizing the prior detection networks that are termed as DetNet and ScNet. MsNet further simplifies the sparse connection structure and reduces network complexity, which also changes the coefficients of the residual structure in the network into trainable variables. In addition, this paper designs an activation function to improve the performance of massive MIMO detection in high-order modulation scenarios. The simulation results show that MsNet has better symbol error rate (SER) performance and both computational complexity and the number of training parameters are significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document