treatment wetland
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 71)

H-INDEX

33
(FIVE YEARS 7)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8157
Author(s):  
Marco Antonio Rodriguez-Dominguez ◽  
Patrick Biller ◽  
Pedro N. Carvalho ◽  
Hans Brix ◽  
Carlos Alberto Arias

The potential of using the biomass of four wetland plant species (Iris pseudacorus, Juncus effusus, Phragmites australis and Typha latifolia) grown in treatment wetland systems and under natural conditions were tested to produce high-value materials using hydro-thermal liquefaction (HTL). The results show that the wetland plants biomass is suitable for biocrude and biochar production regardless of the origin. The hydrothermal liquefaction products’ (biocrude, biochar, aqueous and gaseous phase) yields vary according with the specific biomass composition of the species. Furthermore, the results show that the biomass composition can be affected by the growing condition (treatment wetland or natural unpolluted conditions) of the plants. None of the single components seems to have a determinant effect on the biocrude yields, which reached around 30% for all the analyzed plants. On the contrary, the biochar yields seem to be affected by the composition of the biomass, obtaining different yields for the different plant species, with biochar yields values from around 12% to 22%, being that Phragmites australis is the one with the highest average yield. The obtained aqueous phase from the different plant species produces homogeneous compounds for each plant species and each growing environment. The study shows that biomass from treatment wetlands is suitable for biocrude production. The environmental value of this biomass lies on the fact that it is considered a residual product with no aggregated value. The treatment wetland biomass is a potential sustainable source for biofuel production since these plants do not need extra land or nutrients for growing, and the biomass does not compete with other uses, offering new sources for enhancing the bioeconomy concepts.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mahdi Mahmoudpour ◽  
Siamak Gholami ◽  
Majid Ehteshami ◽  
Marjan Salari

Water pollution is one of the most critical global issues. Meanwhile, the problem of water pollution of rivers especially in Iran is rising due to expansion of agricultural and industrial applications. Due to a large number of sewer catchments, there are some dam reservoirs like ZHAVE in Iranian state of Kurdistan that have not been able to collect significant amount of water since last 10 years. Removal of heavy metals as contaminants from runoffs and recycling of water is a necessity and a vital issue in the world. Various methods and standards are invented and used to isolate and remove all types of pollutants. This study focuses on the purification and removal of contaminants in water sources using the phytoremediation method by introducing Vetiver grass species in the case of floating treatment wetland (FTW). This study’s preliminary purpose is to investigate a practical remedial solution and improvement methodology for the water quality of reservoirs and rivers by growing the floating Vetiver island method. The results show that following parameters such as COD by 97%, TN by 90%, phosphorus by 66%, TDS by 26%, and evapotranspiration by 40% were reduced. Therefore, we concluded that for a wastewater with varying neutrient concentrations such as in ZHAVE dam, concentration of nutrients N and P was controlled and consequently inhibition and prevention of the eutrophication of water resources in the medium and long term became possible due to reduction in the rate of evaporation from reservoirs.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1817
Author(s):  
Suhad A. A. A. N. Almuktar ◽  
Suhail N. Abed ◽  
Miklas Scholz ◽  
Vincent C. Uzomah

Accumulation of trace elements, including heavy metals, were evaluated in soil and fruits of chilli plants (Capsicum annuum L.) grown under both laboratory-controlled and semi-controlled greenhouse location conditions. Chilli plant biomass growth in different development stages and fruit productivity were evaluated and compared with each other for the impact of growth boundary conditions and water quality effects. Treated synthetic greywaters by different operational design set-ups of floating treatment wetland systems were recycled for watering chillies in both locations. Effluents of each individual group of treatment set-up systems were labelled to feed sets of three replicates of chilli plants in both locations. Results revealed that the treated synthetic greywater (SGW) complied with thresholds for irrigation water, except for high concentrations (HC) of phosphates, total suspended soils, and some trace elements, such as cadmium. Chilli plants grew in both locations with different growth patterns in each development stage. First blooming and high counts of flowers were observed in the laboratory. Higher fruit production was noted for greenhouse plants: 2266 chilli fruits with a total weight of 16.824 kg with an expected market value of GBP 176.22 compared to 858 chilli fruits from the laboratory with a weight of 3.869 kg and an estimated price of GBP 17.61. However, trace element concentrations were detected in chilli fruits with the ranking order of occurrence as: Mg > Ca > Na > Fe > Zn > Al > Mn > Cu > Cd > Cr > Ni > B. The highest concentrations of accumulated Cd (3.82 mg/kg), Cu (0.56 mg/kg), and Na (0.56 mg/kg) were recorded in chilli fruits from the laboratory, while greater accumulations of Ca, Cd, Cu, Mn, and Ni with concentrations of 4.73, 1.30, 0.20, 0.21, and 0.24 mg/kg, respectively, were linked to fruits from the greenhouse. Trace elements in chilli plant soils followed the trend: Mg > Fe > Al > Cr > Mn > Cd > Cu > B. The accumulated concentrations in either chilli fruits or the soil were above the maximum permissible thresholds, indicating the need for water quality improvements.


2021 ◽  
Author(s):  
Paul Julian II ◽  
Todd Z. Osborne ◽  
Vimala D. Nair

Abstract Oligotrophic wetlands of the Everglades are often the final recipients of nutrients from adjacent ecosystems and tend to accumulate phosphorus (P) in their soils. Understanding P source and sink dynamics in wetlands are critical for managing wetland ecosystems and protecting downstream resources. In this study, soil P storage capacity (SPSC) was evaluated within two treatment flow-ways of the Everglades Stormwater Treatment Areas (STAs). This study hypothesized that SPSC will vary between flow-ways, soil depth, and spatially along the inflow-to-outflow gradient. The P storage capacity in the STAs depend on the proportion of iron, aluminum, calcium, and magnesium (Fe, Al, Ca, and Mg, respectively) to P with floc and recently accreted soils (RAS) being associated more with Ca and Mg and pre-STA soils being associated more with Fe and Al. Phosphorus loss, as indicated from SPSC values would vary between systems and soil depths suggesting a variable condition of P sink and source within and along flow-ways. This result, while limited, demonstrates the applicability of SPSC to wetlands systems and provides information that will aid operational or management decisions associated with improving P retention of the Everglades STAs.


Sign in / Sign up

Export Citation Format

Share Document