induced mutations
Recently Published Documents


TOTAL DOCUMENTS

1144
(FIVE YEARS 168)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Julieta H. Sepúlveda-Yáñez ◽  
Diego Alvarez Saravia ◽  
Bas Pilzecker ◽  
Pauline A. van Schouwenburg ◽  
Mirjam van den Burg ◽  
...  

Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.


2022 ◽  
Vol 12 ◽  
Author(s):  
Prateek Gupta ◽  
Joseph Hirschberg

Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.


2022 ◽  
Vol 12 ◽  
Author(s):  
Stacy D. Singer ◽  
Kimberley Burton Hughes ◽  
Udaya Subedi ◽  
Gaganpreet Kaur Dhariwal ◽  
Kazi Kader ◽  
...  

Alfalfa (Medicago sativa L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance. In this study, we aimed to further characterize the function of MsSPL8 in alfalfa using CRISPR/Cas9-induced mutations in this gene. We successfully generated alfalfa genotypes with small insertions/deletions (indels) at the target site in up to three of four MsSPL8 alleles in the first generation. The efficiency of editing appeared to be tightly linked to the particular gRNA used. The resulting genotypes displayed consistent morphological alterations, even with the presence of up to two wild-type MsSPL8 alleles, including reduced leaf size and early flowering. Other phenotypic effects appeared to be dependent upon mutational dosage, with those plants with the highest number of mutated MsSPL8 alleles also exhibiting significant decreases in internode length, plant height, shoot and root biomass, and root length. Furthermore, MsSPL8 mutants displayed improvements in their ability to withstand water-deficit compared to empty vector control genotypes. Taken together, our findings suggest that allelic mutational dosage can elicit phenotypic gradients in alfalfa, and discrepancies may exist in terms of MsSPL8 function between alfalfa genotypes, growth conditions, or specific alleles. In addition, our results provide the foundation for further research exploring drought tolerance mechanisms in a forage crop.


2022 ◽  
Vol 82 ◽  
Author(s):  
X. Zhou ◽  
K. Shafique ◽  
M. Sajid ◽  
Q. Ali ◽  
E. Khalili ◽  
...  

Abstract The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Author(s):  
Skylar R Wyant ◽  
M Fernanda Rodriguez ◽  
Corey K Carter ◽  
Wayne A Parrott ◽  
Scott A Jackson ◽  
...  

Abstract The mutagenic effects of ionizing radiation have been used for decades to create novel variants in experimental populations. Fast neutron (FN) bombardment as a mutagen has been especially widespread in plants, with extensive reports describing the induction of large structural variants, i.e., deletions, insertions, inversions, and translocations. However, the full spectrum of FN-induced mutations is poorly understood. We contrast small insertions and deletions (indels) observed in 27 soybean lines subject to FN irradiation with the standing indels identified in 107 diverse soybean lines. We use the same populations to contrast the nature and context (bases flanking a nucleotide change) of single nucleotide variants. The accumulation of new single nucleotide changes in FN lines is marginally higher than expected based on spontaneous mutation. In FN treated lines and in standing variation, C→T transitions and the corresponding reverse complement G→A transitions are the most abundant and occur most frequently in a CpG local context. These data indicate that most SNPs identified in FN lines are likely derived from spontaneous de novo processes in generations following mutagenesis rather than from the FN irradiation mutagen. However, small indels in FN lines differ from standing variants. Short insertions, from 1–6 base pairs, are less abundant than in standing variation. Short deletions are more abundant and prone to induce frameshift mutations that should disrupt the structure and function of encoded proteins. These findings indicate that FN irradiation generates numerous small indels, increasing the abundance of loss of function mutations that impact single genes.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 897
Author(s):  
Min Tang-Fichaux ◽  
Priscilla Branchu ◽  
Jean-Philippe Nougayrède ◽  
Eric Oswald

Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1293
Author(s):  
Peerzada Umar Farooq Baba ◽  
Zubaida Rasool ◽  
Ishrat Younas Khan ◽  
Clay J. Cockerell ◽  
Richard Wang ◽  
...  

Merkel cell carcinoma (MCC) is an infrequent, rapidly growing skin neoplasm that carries a greater probability of regional lymph node involvement, and a grim prognosis in advanced cases. While it is seen predominantly in old age in sun-exposed body parts, the prevalence varies among different races and geographical regions. Merkel cell polyomavirus and UV radiation-induced mutations contribute to its etiopathogenesis. The clinical presentation of MCC lacks pathognomonic features and is rarely considered highly at the time of presentation. Histopathological examination frequently reveals hyperchromatic nuclei with high mitotic activity, but immunohistochemistry is required to confirm the diagnosis. Sentinel lymph node biopsy (SLNB) and imaging are advised for effective staging of the disease. Multimodal management including surgery, radiation therapy, and/or immunotherapy are deployed. Traditional cytotoxic chemotherapies may result in an initial response, but do not result in a significant survival benefit. Checkpoint inhibitors have dramatically improved the prognosis of patients with metastatic MCC, and are recommended first-line in advanced cases. There is a need for well-tolerated agents with good safety profiles in patients who have failed immunotherapies.


2021 ◽  
Author(s):  
Aldo S Bader ◽  
Martin Bushell

DNA double-strand breaks (DSBs) are the most mutagenic form of DNA damage, and play a significant role in cancer biology, neurodegeneration and aging. However, studying DSB-induced mutagenesis is currently limited by the tools available for mapping these mutations. Here, we describe iMUT-seq, a technique that profiles DSB-induced mutations at high-sensitivity and single-nucleotide resolution around endogenous DSBs spread across the genome. By depleting 20 different DSB-repair factors we defined their mutational signatures in detail, revealing remarkable insights into the mechanisms of DSB-induced mutagenesis. We find that homologous-recombination (HR) is mutagenic in nature, displaying high levels of base substitutions and mononucleotide deletions due to DNA-polymerase errors, but simultaneously reduced translocation events, suggesting the primary role of HR is the specific suppression of genomic rearrangements. The results presented here offer new fundamental insights into DSB-induced mutagenesis and have significant implications for our understanding of cancer biology and the development of DDR-targeting chemotherapeutics.


Sign in / Sign up

Export Citation Format

Share Document