spectral simulation
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 277
Author(s):  
Ping Zhou ◽  
Zhe Zhao ◽  
Guangyuan Wei ◽  
Hong-Yuan Huo

Our simulated lunar regolith spectra database, based on the Hapke AMSA radiative transfer model (RTM), is a large supplement to the limited number of lunar spectra data. By analyzing the multiple solutions and applicable scopes of the Hapke model by means of Newton interpolation and the least square optimization method, an improved method was found for the simulation of spectra, but it remained challenging to use to invert mineral abundance. Then, we simulated the spectra, mineral abundance, particle size and maturity of 57 mare and highland samples of the Lunar Soil Characterization Consortium (LSCC) in size groups of 10 µm, 10–20 µm and 20–45 µm. The simulated and measured spectra fit well with each other, with correlation coefficients greater than 0.99 and root mean square errors at a magnitude of 10-3. The parameters of mineral abundance, particle size and maturity are highly consistent with the measured values. Having confirmed the reliability of our simulation method, we analyzed the mechanism, reliability and applicability of the “spectral characteristic angle parameter” proposed by Lucey using the simulated spectral data of lunar regolith. Lucey’s method is only suitable for macro analysis of the entire moon, and the error is large when it is used for areas with high abundance of forsterite or ilmenite. In the spectral simulation of lunar regolith, olivine was subdivided into forsterite and fayalite, and the two end-members were mixed to approximately estimate the effect of the chemical composition of olivine on the spectra, which has been confirmed to be feasible.


2021 ◽  
Vol 16 ◽  
Author(s):  
Yaser Nejaty Jahromy

Background: Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) and citrulline from L-arginine, dioxygen (O2), and nicotinamide adenine dinucleotide phosphate (NADPH) in a two-step reaction, with the enzyme-bound intermediate Nω-hydroxy-L-arginine (NHA). Previous electron paramagnetic resonance (EPR) studies of NOS reaction have shown that (6R, 1'R, 2'S)-6-(l',2'-dihydroxypropyl)-5,6,7,8-tetrahydropterin (H4B) acts as a single electron donor in both steps of the reaction, resulting in the transient generation of a tetrahydropterin cation radical (H4B•+). Results: H4B•+ can also be chemically generated in strongly acidic solutions. EPR studies of chemically generated H4B•+ and similar pterin radicals date back to the 1960s. However, the reported paramagnetic parameters of H4B•+ in NOS do not seem to match the corresponding reported parameters for either H4B•+ or other pterin centered radicals chemically generated in solution. In particular, the rather isotropic hyperfine coupling of ca. 45 MHz for 1H6 of H4B•+ in NOS is at least 15 MHz larger than that of H4B•+ or any other previously studies pterin solution radical. In the work reported here, a combination of 9.5 - 9.8 GHz contentious wave (cw-) EPR, 34GHz 1H electron nuclear double resonance (ENDOR), spectral simulation and Density Functional Theory (DFT) calculations were used to investigate this seeming discrepancy. Conclusion: We demonstrated that the differences in the paramagnetic parameters of the chemically generated H4B radicals in solutions and those of the H4B radicals in NOS are consistent with the presence of two different conformers of the same cation radical in the two media.


2021 ◽  
Author(s):  
C. Pierson ◽  
M. Gkaintatzi-Masouti ◽  
M.P.J. Aarts ◽  
M. Andersen

As the interest in design applications related to responses to light beyond vision is growing, two simulation tools, ALFA and Lark, have been developed to incorporate spectral characteristics of light in the evaluation of indoor lighting conditions. The spectral characteristics of light are of particular relevance when studying ipRGC-influenced responses. This paper aims to assess the reliability of these tools in predicting indoor spectral irradiance specifically from electric lighting. Spectral irradiance was measured under three indoor electric lighting scenarios and compared against spectral irradiance simulated in ALFA and Lark. While the outcomes of the study tend to show that ALFA is both more accurate and faster, rather large errors were found for spectral irradiance (-28.6% to 33.4%). In comparison to a prior study focusing on daylighting, these results seem to indicate that spectral simulations of electrically lit scenes are generally less accurate than those of daylit scenes with these tools.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012116
Author(s):  
Pierson Clotilde ◽  
Soto Magán Victoria Eugenia ◽  
Aarts Mariëlle ◽  
Andersen Marilyne

Abstract Recent developments in the lighting research field have demonstrated the importance of a proper exposure to light to mediate several of our behavioral and physiological responses. However, we spend nowadays around 90% of our time indoors with an often quite limited access to bright daylight. To be able to anticipate how much the built environment actually influences our light exposure, and how much it may ultimately impact our health, well-being, and productivity, new computational tools are needed. In this paper, we present a first attempt at a simulation workflow that integrates a spectral simulation tool with a light-driven prediction model of alertness. The goal is to optimize the effects of light on building occupants, by informing the decision makers about the impact of different design choices. The workflow is applied to a case study to provide an example of what learnings can be expected from it.


Author(s):  
Mirjam Schröder ◽  
Daniel Rauber ◽  
Clemens Matt ◽  
Christopher W. M. Kay

AbstractTesting and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the $$B_{1}$$ B 1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy.


2021 ◽  
Author(s):  
Makki Abdelmouleh ◽  
Ilyes Jedidi

This chapter summarizes the study of the filler (ie copper) effect on LDPE phasic composition in LDPE/Cu composites prepared in solution. During this research work, a particular effort is focused on the use of DSC under non-standard conditions. Therewith, the presence of copper microparticles has a great effect on the network phase than on the crystalline long-range-order phase of LDPE structure. Furthermore, LDPE phasic composition in absence and presence of copper microparticles is investigated by FTIR spectroscopy followed by a spectral simulation of the band that appeared at 720 cm−1 corresponding to the CH2. Anywise, the two-phase model confirmed that no variation is observed of LDPE phase composition for all copper contents into LDPE/Cu films. However, with the three-phase model the orthorhombic phase fraction was found to be constant compared to the fraction of amorphous and that of network phase were found to increase and decrease respectively with increase in the copper particle load in the film. Overall, the thermal and structural behavior of LDPE in presence of copper particles allows this type to be used as phase change materials (PCMs) by adding a paraffin fraction in the LDPE/Cu composite. An update of the most relevant work carried out in the field of phasic characterization of polyethylene is presented in this chapter.


2021 ◽  
Author(s):  
Martin Poncelet ◽  
Justin L. Huffman ◽  
Gareth R. Eaton ◽  
Whylder Moore ◽  
Sandra Eaton ◽  
...  

<p>Soluble stable radicals are used as spin probes and spin labels for <i>in vitro</i> and <i>in vivo</i> Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications. We report the synthesis and characterization of a perchlorinated triarylmethyl radical enriched 99% at the central carbon, <b><sup>13</sup>C<sub>1</sub>-PTMTC</b>. The anisotropy of the hyperfine splitting with the <sup>13</sup>C<sub>1</sub> (A<sub>x</sub>=26, A<sub>y</sub>=25, A<sub>z</sub>=199.5 MHz) and the g (g<sub>x</sub>=2.0015, g<sub>y</sub>=2.0015, g<sub>z</sub>=2.0040) are responsible for a strong effect of the radical tumbling rate on the EPR spectrum. The rotational correlation time can be determine by spectral simulation or via the linewidth after calibration. As spin probe <b><sup>13</sup>C<sub>1</sub>-PTMTC </b>can be used to measure media microviscosity with high sensitivity. Bound to a macromolecule as spin label, <b><sup>13</sup>C<sub>1</sub>-PTMTC </b>could be used to study local mobility and molecular interactions.</p>


2021 ◽  
Author(s):  
Martin Poncelet ◽  
Justin L. Huffman ◽  
Gareth R. Eaton ◽  
Whylder Moore ◽  
Sandra Eaton ◽  
...  

<p>Soluble stable radicals are used as spin probes and spin labels for <i>in vitro</i> and <i>in vivo</i> Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications. We report the synthesis and characterization of a perchlorinated triarylmethyl radical enriched 99% at the central carbon, <b><sup>13</sup>C<sub>1</sub>-PTMTC</b>. The anisotropy of the hyperfine splitting with the <sup>13</sup>C<sub>1</sub> (A<sub>x</sub>=26, A<sub>y</sub>=25, A<sub>z</sub>=199.5 MHz) and the g (g<sub>x</sub>=2.0015, g<sub>y</sub>=2.0015, g<sub>z</sub>=2.0040) are responsible for a strong effect of the radical tumbling rate on the EPR spectrum. The rotational correlation time can be determine by spectral simulation or via the linewidth after calibration. As spin probe <b><sup>13</sup>C<sub>1</sub>-PTMTC </b>can be used to measure media microviscosity with high sensitivity. Bound to a macromolecule as spin label, <b><sup>13</sup>C<sub>1</sub>-PTMTC </b>could be used to study local mobility and molecular interactions.</p>


Sign in / Sign up

Export Citation Format

Share Document