wulff construction
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Lorena Vega ◽  
Francesc Viñes ◽  
Konstantin M. Neyman

Metal nanoparticles (NPs) are ubiquitous in many fields, from nanotechnology to heterogeneous catalysis, with properties differing from those of single-crystal surfaces and bulks. A key aspect is the size-dependent evolution of NP properties toward the bulk limit, including the adoption of different NP shapes, which may bias the NP stability based on the NP size. Herein, the stability of different Pdn NPs (n = 10–1504 atoms) considering a myriad of shapes is investigated by first-principles energy optimisation, leading to the determination that icosahedron shapes are the most stable up to a size of ca. 4 nm. In NPs larger than that size, truncated octahedron shapes become more stable, yet a presence of larger {001} facets than the Wulff construction is forecasted due to their increased stability, compared with (001) single-crystal surfaces, and the lower stability of {111} facets, compared with (111) single-crystal surfaces. The NP cohesive energy breakdown in terms of coordination numbers is found to be an excellent quantitative tool of the stability assessment, with mean absolute errors of solely 0.01 eV·atom−1, while a geometry breakdown allows only for a qualitative stability screening.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1799
Author(s):  
Xiaohang Lin ◽  
Lin Song ◽  
Anchen Shao ◽  
Minghao Hua ◽  
Hui Li ◽  
...  

In the present work, the Wulff cluster model—which has been proven to successfully describe pure metals, homogeneous alloys, and eutectic alloys—has been extended to complex binary Al80Ti20 alloys, containing intermetallic compounds. In our model, the most probable structure in metallic melts should have the shape determined by Wulff construction within the crystal structure inside, and the cluster’s size could be measured by pair distribution function. For Al80Ti20 binary alloy, three different types of clusters (Al cluster, Al3Ti cluster, and Ti cluster) were proposed. Their contributions in XRD results are investigated by a comparison with the partial XRD pattern. Ti–Ti and Al–Ti partial structural factors are completely contributed by a pure Ti cluster and an Al3Ti cluster, respectively. Al–Al partial structural factor is contributed not only by a pure Al cluster but is also related to part of the Al3Ti cluster. The simulated XRD curve shows a good agreement with the experimental partial I(θ), including the peak position, width, and relative intensity.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Christina Boukouvala ◽  
Joshua Daniel ◽  
Emilie Ringe

AbstractUnlike in the bulk, at the nanoscale shape dictates properties. The imperative to understand and predict nanocrystal shape led to the development, over several decades, of a large number of mathematical models and, later, their software implementations. In this review, the various mathematical approaches used to model crystal shapes are first overviewed, from the century-old Wulff construction to the year-old (2020) approach to describe supported twinned nanocrystals, together with a discussion and disambiguation of the terminology. Then, the multitude of published software implementations of these Wulff-based shape models are described in detail, describing their technical aspects, advantages and limitations. Finally, a discussion of the scientific applications of shape models to either predict shape or use shape to deduce thermodynamic and/or kinetic parameters is offered, followed by a conclusion. This review provides a guide for scientists looking to model crystal shape in a field where ever-increasingly complex crystal shapes and compositions are required to fulfil the exciting promises of nanotechnology.


Author(s):  
Sonia Jaśkaniec ◽  
Seán R. Kavanagh ◽  
João Coelho ◽  
Seán Ryan ◽  
Christopher Hobbs ◽  
...  

AbstractBatteries are the most abundant form of electrochemical energy storage. Lithium and sodium ion batteries account for a significant portion of the battery market, but high-performance electrochemically active materials still need to be discovered and optimized for these technologies. Recently, tin(II) oxide (SnO) has emerged as a highly promising battery electrode. In this work, we present a facile synthesis method to produce SnO microparticles whose size and shape can be tailored by changing the solvent nature. We study the complex relationship between wet-chemistry synthesis conditions and resulting layered nanoparticle morphology. Furthermore, high-level electronic structure theory, including dispersion corrections to account for van der Waals forces, is employed to enhance our understanding of the underlying chemical mechanisms. The electronic vacuum alignment and surface energies are determined, allowing the prediction of the thermodynamically favoured crystal shape (Wulff construction) and surface-weighted work function. Finally, the synthesized nanomaterials were tested as Li-ion battery anodes, demonstrating significantly enhanced electrochemical performance for morphologies obtained from specific synthesis conditions.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 541 ◽  
Author(s):  
Albert J. Power ◽  
Ioannis N. Remediakis ◽  
Vagelis Harmandaris

Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.


CrystEngComm ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 1423-1428
Author(s):  
Daichi Yosho ◽  
Yuriko Matsuo ◽  
Akira Kusaba ◽  
Pawel Kempisty ◽  
Yoshihiro Kangawa ◽  
...  

An ab initio-based approach is used to study the facet stability of GaN during THVPE. The surface phase diagrams as functions of temperature and pressure are determined. Wulff construction is used to predict the crystal shape.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zihao Ou ◽  
Lehan Yao ◽  
Hyosung An ◽  
Bonan Shen ◽  
Qian Chen

Abstract Development of the surface morphology and shape of crystalline nanostructures governs the functionality of various materials, ranging from phonon transport to biocompatibility. However, the kinetic pathways, following which such development occurs, have been largely unexplored due to the lack of real-space imaging at single particle resolution. Here, we use colloidal nanoparticles assembling into supracrystals as a model system, and pinpoint the key role of surface fluctuation in shaping supracrystals. Utilizing liquid-phase transmission electron microscopy, we map the spatiotemporal surface profiles of supracrystals, which follow a capillary wave theory. Based on this theory, we measure otherwise elusive interfacial properties such as interfacial stiffness and mobility, the former of which demonstrates a remarkable dependence on the exposed facet of the supracrystal. The facet of lower surface energy is favored, consistent with the Wulff construction rule. Our imaging–analysis framework can be applicable to other phenomena, such as electrodeposition, nucleation, and membrane deformation.


Author(s):  
Emiliana-Laura Andreici Eftimie ◽  
Nicolae M. Avram ◽  
Christian Jelsch ◽  
Mirela Nicolov

The present paper reports a theoretical investigation based on first-principles density functional theory calculations to predict the external morphology of the tetragonal GdVO4 crystal from its internal structure. The Bravais–Friedel–Donnay–Harker (BFDH) method, attachment energy (AE) method and surface energy (SE) method were used in this study. Slice energies (cohesive, attachment and specific surface) of the three main crystal faces having (110), (101) and (200) orientation and their d hkl thicknesses were computed using CRYSTAL17 code, in the frame of a 2D periodic slab model. The relative growth rate (R hkl ) and the morphological importance (MI hkl ) for each unrelaxed and relaxed (hkl) face of interest were determined. Consequently, the crystal shapes predicted based upon BFDH, AE and SE methods were represented by the Wulff construction. The results of the morphology crystal predictions, based on the above methods, were compared both against each other and against the experimentally observed morphologies. A quite satisfactory agreement between the predicted and observed crystal morphologies is noticed.


Sign in / Sign up

Export Citation Format

Share Document