molten salt electrolysis
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 84)

H-INDEX

16
(FIVE YEARS 6)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1981
Author(s):  
Namhun Kwon ◽  
Jong-Soo Byeon ◽  
Hyun Chul Kim ◽  
Sung Gue Heo ◽  
Soong Ju Oh ◽  
...  

To overcome the scarcity and resource limitations of Ti metal, deoxidation of Ti scrap was conducted through electrolytic refining and chemical reaction with MgCl2 molten salt electrolysis. The oxygen concentration in Ti scraps was decreased by the electrochemical and chemical reactions generated by the applied voltages. The optimized conditions for the process were derived by controlling the conditions and parameters by decreasing the thermodynamic activity of the reactants. The correlation between the deoxidation efficiency and the behavior of the voltage and current was confirmed by setting the conditions of the electrolysis process in various voltage ranges. In addition, the correlation between the presence of impurities and the measured oxygen concentration was evaluated. The surface element analysis result indicated that the salt that was not removed contained a certain amount of oxygen. Thus, the removal efficiencies of impurities and particles by deriving various post-treatment process conditions were analyzed. The results confirmed that the most stable and efficient current was formed at a specific higher voltage. Moreover, the best deoxidation result was 2425 ppm, which was 50% lower than that of the initial Ti scrap.


Author(s):  
Emma Laasonen ◽  
Vesa Ruuskanen ◽  
Markku Niemelä ◽  
Tuomas Koiranen ◽  
Jero Ahola

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6875
Author(s):  
Hui Li ◽  
Yutian Fu ◽  
Jinglong Liang ◽  
Chenxiao Li ◽  
Jing Wang ◽  
...  

With the widespread use of lithium-ion batteries, the cumulative amount of used lithium-ion batteries is also increasing year by year. Since waste lithium-ion batteries contain a large amount of valuable metals, the recovery of valuable metals has become one of the current research hotspots. The research uses electrometallurgical technology, and the main methods used are cyclic voltammetry, square wave voltammetry, chronoamperometry and open circuit potential. The electrochemical reduction behavior of Ni3+ in NaCl-CaCl2 molten salt was studied, and the electrochemical reduction behavior was further verified by using a Mo cavity electrode. It is determined that the reduction process of Ni3+ in LiNiO2 is mainly divided into two steps: LiNiO2 → NiO → Ni. Through the analysis of electrolysis products under different conditions, when the current value of LiNiO2 is not less than 0.03 A, the electrolysis product after 10 h is metallic Ni. When the current reaches 0.07 A, the current efficiency is 77.9%, while the Li+ in LiNiO2 is enriched in NaCl-CaCl2 molten salt. The method realizes the separation and extraction of the valuable metal Ni in the waste lithium-ion battery.


2021 ◽  
Vol MA2021-02 (60) ◽  
pp. 1784-1784
Author(s):  
Jungshin Kang ◽  
Tae-Hyuk Lee ◽  
Hyeong-Jun Jeoung ◽  
Dong-Hee Lee ◽  
Young Min Kim ◽  
...  

2021 ◽  
Vol MA2021-02 (60) ◽  
pp. 1777-1777
Author(s):  
Toshiyuki Nohira ◽  
Kenji Kawaguchi ◽  
Tomomi Kagotani ◽  
Kouji Yasuda ◽  
Hirokazu Konishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document