mu rhythm
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 67)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Giovanni Vecchiato ◽  
Maria Del Vecchio ◽  
Jonas Ambeck-Madsen ◽  
Luca Ascari ◽  
Pietro Avanzini

AbstractUnderstanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver.


2021 ◽  
Author(s):  
Kyveli Kompatsiari ◽  
Francesco Bossi ◽  
Agnieszka Wykowska

Eye contact established by a human partner has been shown to affect various cognitive processes of the receiver. However, little is known about humans’ responses to eye contact established by a humanoid robot. Here, we aimed at examining humans’ oscillatory brain response to eye contact with a humanoid robot. Eye contact (or lack thereof) was embedded in a gaze cueing task and preceded the phase of gaze-related attentional orienting. In addition to examining the effect of eye contact on the recipient, we also tested its impact on gaze cueing effects. Results showed that participants rated eye contact as more engaging and responded with higher desynchronization of alpha-band activity in left fronto-central and central electrode clusters when the robot established eye contact with them, compared to no eye contact condition. However, eye contact did not modulate gaze cueing effects. The results are interpreted in terms of the functional roles involved in alpha central rhythms (potentially interpretable also as mu rhythm), including joint attention and engagement in social interaction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gurgen Soghoyan ◽  
Alexander Ledovsky ◽  
Maxim Nekrashevich ◽  
Olga Martynova ◽  
Irina Polikanova ◽  
...  

Independent Component Analysis (ICA) is a conventional approach to exclude non-brain signals such as eye movements and muscle artifacts from electroencephalography (EEG). A rejection of independent components (ICs) is usually performed in semiautomatic mode and requires experts’ involvement. As also revealed by our study, experts’ opinions about the nature of a component often disagree, highlighting the need to develop a robust and sustainable automatic system for EEG ICs classification. The current article presents a toolbox and crowdsourcing platform for Automatic Labeling of Independent Components in Electroencephalography (ALICE) available via link http://alice.adase.org/. The ALICE toolbox aims to build a sustainable algorithm to remove artifacts and find specific patterns in EEG signals using ICA decomposition based on accumulated experts’ knowledge. The difference from previous toolboxes is that the ALICE project will accumulate different benchmarks based on crowdsourced visual labeling of ICs collected from publicly available and in-house EEG recordings. The choice of labeling is based on the estimation of IC time-series, IC amplitude topography, and spectral power distribution. The platform allows supervised machine learning (ML) model training and re-training on available data subsamples for better performance in specific tasks (i.e., movement artifact detection in healthy or autistic children). Also, current research implements the novel strategy for consentient labeling of ICs by several experts. The provided baseline model could detect noisy IC and components related to the functional brain oscillations such as alpha and mu rhythm. The ALICE project implies the creation and constant replenishment of the IC database, which will improve ML algorithms for automatic labeling and extraction of non-brain signals from EEG. The toolbox and current dataset are open-source and freely available to the researcher community.


2021 ◽  
Author(s):  
Almudena Capilla ◽  
Lydia Arana ◽  
Marta Garcia-Huescar ◽  
Maria Melcon ◽  
Joachim Gross ◽  
...  

Brain oscillations are considered to play a pivotal role in neural communication. However, detailed information regarding the typical oscillatory patterns of individual brain regions is surprisingly scarce. In this study we applied a multivariate data-driven approach to create an atlas of the natural frequencies of the resting human brain on a voxel-by-voxel basis. We analysed resting-state magnetoencephalography (MEG) data from 128 healthy adult volunteers obtained from the Open MEG Archive (OMEGA). Spectral power was computed in source space in 500 ms steps for 82 frequency bins logarithmically spaced from 1.7 to 99.5 Hz. We then applied k-means clustering to detect characteristic spectral profiles and to eventually identify the natural frequency of each voxel. Our results revealed a region-specific organisation of intrinsic oscillatory activity, following both a medial-to-lateral and a posterior-to-anterior gradient of increasing frequency. In particular, medial fronto-temporal regions were characterised by slow rhythms (delta/theta). Posterior regions presented natural frequencies in the alpha band, although with differentiated generators in the precuneus and in sensory-specific cortices (i.e., visual and auditory). Somatomotor regions were distinguished by the mu rhythm, while the lateral prefrontal cortex was characterised by oscillations in the high beta range (>20 Hz). Importantly, the brain map of natural frequencies was highly replicable in two independent subsamples of individuals. To the best of our knowledge, this is the most comprehensive atlas of ongoing oscillatory activity performed to date. Furthermore, the identification of natural frequencies is a fundamental step towards a better understanding of the functional architecture of the human brain.


2021 ◽  
Vol 60 ◽  
pp. 101006
Author(s):  
Daniela Santos Oliveira ◽  
Tim Saltuklaroglu ◽  
David Thornton ◽  
David Jenson ◽  
Ashley W. Harkrider ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander B. Remsik ◽  
Klevest Gjini ◽  
Leroy Williams ◽  
Peter L. E. van Kan ◽  
Shawna Gloe ◽  
...  

Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation. The present sub analyses of ongoing crossover-controlled trial NCT02098265 examine first whether, during movements of the affected hand compared to rest, ipsilesional Mu rhythm desynchronization of cerebral cortical sensorimotor areas [Brodmann’s areas (BA) 1-7] is localized and tracks with changes in grip force strength. Secondly, we test the hypothesis that BCI intervention results in changes in frequency-specific directional flow of information transmission (direct path functional connectivity) in BA 1-7 by measuring changes in isolated effective coherence (iCoh) between cerebral cortical sensorimotor areas thought to relate to electrophysiological signatures of motor actions and motor learning. A sample of 16 stroke survivors with right hemisphere lesions (left hand motor impairment), received a maximum of 18–30 h of BCI intervention. Electroencephalograms were recorded during intervention sessions while outcome measures of motor function and capacity were assessed at baseline and completion of intervention. Greater desynchronization of Mu rhythm, during movements of the impaired hand compared to rest, were primarily localized to ipsilesional sensorimotor cortices (BA 1-7). In addition, increased Mu desynchronization in the ipsilesional primary motor cortex, Post vs. Pre BCI intervention, correlated significantly with improvements in hand function as assessed by grip force measurements. Moreover, the results show a significant change in the direction of causal information flow, as measured by iCoh, toward the ipsilesional motor (BA 4) and ipsilesional premotor cortices (BA 6) during BCI intervention. Significant iCoh increases from ipsilesional BA 4 to ipsilesional BA 6 were observed in both Mu [8–12 Hz] and Beta [18–26 Hz] frequency ranges. In summary, the present results are indicative of improvements in motor capacity and behavior, and they are consistent with the view that BCI-FES intervention improves functional motor capacity of the ipsilesional hemisphere and the impaired hand.


Author(s):  
Kayley Birch-Hurst ◽  
Magdalena Rychlowska ◽  
Michael B. Lewis ◽  
Ross E. Vanderwert

AbstractPeople tend to automatically imitate others’ facial expressions of emotion. That reaction, termed “facial mimicry” has been linked to sensorimotor simulation—a process in which the observer’s brain recreates and mirrors the emotional experience of the other person, potentially enabling empathy and deep, motivated processing of social signals. However, the neural mechanisms that underlie sensorimotor simulation remain unclear. This study tests how interfering with facial mimicry by asking participants to hold a pen in their mouth influences the activity of the human mirror neuron system, indexed by the desynchronization of the EEG mu rhythm. This response arises from sensorimotor brain areas during observed and executed movements and has been linked with empathy. We recorded EEG during passive viewing of dynamic facial expressions of anger, fear, and happiness, as well as nonbiological moving objects. We examine mu desynchronization under conditions of free versus altered facial mimicry and show that desynchronization is present when adult participants can freely move but not when their facial movements are inhibited. Our findings highlight the importance of motor activity and facial expression in emotion communication. They also have important implications for behaviors that involve occupying or hiding the lower part of the face.


2021 ◽  
Author(s):  
Giovanni Vecchiato ◽  
Maria Del Vecchio ◽  
Jonas Ambeck-Madsen ◽  
Luca Ascari ◽  
Pietro Avanzini

Understanding mental processes in complex human behaviour is a key issue in the context of driving, representing a milestone for developing user-centred assistive driving devices. Here we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left from right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings 128-channel EEG as well as EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side by means of a cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate left from right steering with an earlier dynamic with respect to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results are a proof of concept of how it is possible to complement different physiological signals to control the level of assistance needed by the driver.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 979
Author(s):  
Jin-Cheol Kim ◽  
Hyun-Min Lee

Background and Objectives: The mirror neuron system in the sensorimotor region of the cerebral cortex is equally activated during both action observation and execution. Action observation training mimics the functioning of the mirror neuron system, requiring patients to watch and imitate the actions necessary to perform activities of daily living. StrokeCare is a user-friendly application based on the principles of action observation training, designed to assist people recovering from stroke. Therefore, when observing the daily life behavior provided in the StrokeCare app, whether the MNS is activated and mu inhibition appears. Materials and Methods: We performed electroencephalography (EEG) on 24 patients with chronic stroke (infarction: 11, hemorrhage: 13) during tasks closely related to daily activities, such as dressing, undressing, and walking. The StrokeCare app provided action videos for patients to watch. Landscape imagery observation facilitated comparison among tasks. We analyzed the mu rhythm from the C3, CZ, and C4 regions and calculated the mean log ratios for comparison of mu suppression values. Results: The EEG mu power log ratios were significantly suppressed during action observation in dressing, undressing, walking, and landscape conditions, in decreasing order. However, there were no significant activity differences in the C3, C4 and CZ regions. The dressing task showed maximum suppression after a color spectrum was used to map the relative power values of the mu rhythm for each task. Conclusions: These findings reveal that the human mirror neuron system was more strongly activated during observation of actions closely related to daily life activities than landscape images.


Sign in / Sign up

Export Citation Format

Share Document