electrical field strength
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 26)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Marie Louise Liu ◽  
Anke N Karabanov ◽  
Marjolein Piek ◽  
Esben Thade Petersen ◽  
Axel Thielscher ◽  
...  

Background: Anodal transcranial direct current stimulation (aTDCS) of primary motor hand area (M1-HAND) can enhance corticomotor excitability. Yet, it is still unknown which current intensity produces the strongest effect on regional neural activity. Magnetic resonance imaging (MRI) combined with pseudo-continuous Arterial Spin Labeling (pc-ASL MRI) can map regional cortical blood flow (rCBF) and may thus be useful to probe the relationship between current intensity and neural response at the individual level. Objective: Here we employed pc-ASL MRI to map acute rCBF changes during short-duration aTDCS of left M1-HAND. Using the rCBF response as a proxy for regional neuronal activity, we investigated if short-duration aTDCS produces an instantaneous dose-dependent rCBF increase in the targeted M1-HAND that may be useful for individual dosing. Methods: Nine healthy right-handed participants received 30 seconds of aTDCS at 0.5, 1.0, 1.5, and 2.0 mA with the anode placed over left M1-HAND and cathode over the right supraorbital region. Concurrent pc-ASL MRI at 3 T probed TDCS-related rCBF changes in the targeted M1-HAND. Movement-induced rCBF changes were also assessed. Results: Apart from a subtle increase in rCBF at 0.5 mA, short-duration aTDCS did not modulate rCBF in the M1-HAND relative to no-stimulation periods. None of the participants showed a dose-dependent increase in rCBF during aTDCS, even after accounting for individual differences in TDCS-induced electrical field strength. In contrast, finger movements led to robust activation of left M1-HAND before and after aTDCS. Conclusion: Short-duration bipolar aTDCS does not produce instantaneous dose-dependent rCBF increases in the targeted M1-HAND at conventional intensity ranges. Therefore, the regional hemodynamic response profile to short-duration aTDCS may not be suited to inform individual dosing of TDCS intensity.


2022 ◽  
Vol 12 (2) ◽  
pp. 644
Author(s):  
Andrei Vasile Nastuta ◽  
Torsten Gerling

Application desired functionality as well as operation expenses of cold atmospheric pressure plasma (CAP) devices scale with properties like gas selection. The present contribution provides a comparative investigation for a CAP system operated in argon or helium at different operation voltages and distance to the surface. Comparison of power dissipation, electrical field strength and optical emission spectroscopy from vacuum ultraviolet over visible up to near infrared ((V)UV-VIS-NIR) spectral range is carried out. This study is extended to safety relevant investigation of patient leakage current, induced surface temperature and species density for ozone (O3) and nitrogen oxides (NOx). It is found that in identical operation conditions (applied voltage, distance to surface and gas flow rate) the dissipated plasma power is about equal (up to 10 W), but the electrical field strength differs, having peak values of 320 kV/m for Ar and up to 300 kV/m for He. However, only for Ar CAP could we measure O3 up to 2 ppm and NOx up to 7 ppm. The surface temperature and leakage values of both systems showed different slopes, with the biggest surprise being a constant leakage current over distance for argon. These findings may open a new direction in the plasma source development for Plasma Medicine.


Author(s):  
Rai Naveed Arshad ◽  
Zulkurnain Abdul-Malek ◽  
Ali M. Dastgheib

A pulsed electric field (PEF) produces pasteurized liquid foods with fresh and nutritional properties. The treatment chamber is a crucial part of the PEF processing system where a high voltage is applied, producing an electric field to treat the liquid foods. The proper construction of the treatment chamber regulates the distribution of the electrical field inside the treatment zone. Mixing of liquid inside the treatment zone is an effective tool to overcome this heterogeneous effect. The coaxial treatment chamber offers a heterogeneous electric field and temperature distribution inside the treatment zone. A helical insulator inside the coaxial treatment chamber provides a mixing effect. In this research, a numerical simulation was done to measure the electric field in different geometries of treatment chambers at different flow rates. The simulation aimed to optimize the new coaxial treatment chamber design. The modelling findings showed homogeneous electrical field strength in the helical treatment chamber. This study provides new insights for industrial-scale setup using multiple helical chambers in a continuous flow PEF treatment.


2021 ◽  
Author(s):  
Diego Dubois ◽  
Amirali Eskandariyun ◽  
Suprabha Das ◽  
Andriy Durygin ◽  
Zhe Cheng

Flash sintering is an electrical field-assisted densification technique that requires passing a current through a ceramic powder compact. Pressure-assisted flash sintering of commercially available Zirconium Nitride (ZrN) powders has been demonstrated. Near fully dense samples can be obtained within a short period of time. The influences of parameters such as electrical field strength, voltage ramping rate, current limit, external pressure, pre-heating, and holding time on the onset of the flash event were investigated. Some post-flash sintered samples were subjected to the same condition to observe if the material would experience repeated flash. In addition, material properties such as density and hardness were measured and correlated with SEM and XRD. Implications of the observations on underlying flash sintering mechanism will also be discussed.


2021 ◽  
Author(s):  
Pavel Buran ◽  
Thomas Niedermayer ◽  
Markus Bär

Recent experimental studies have shown that a sequence of low-energy electrical far-field pulses is able to terminate fibrillation with substantially lower per-pulse energy than a single high-energy electric shock (see S. Luther et al. Nature 475 (7355), 235-239). During this low-energy antifibrillation pacing (LEAP) procedure only tissue near sufficiently large conduction heterogeneities, such as large coronary arteries, is activated. In order to understand the mechanism behind LEAP, We have carried out a statistical study of resetting a medium filled by one or more stable spirals (“rotors”) in a two-dimensional electrophysiological model of cardiac tissue perforated by blood vessels to the resting state (“defibrillation”). We found the highest success probabilities for this defibrillation for underdrive pacing with periods 10 – 20 percent larger than the dominant period of the stable rotors in the unperturbed dynamics. If a sufficiently large number pulses is applied and an optimal pacing period chosen, the energy per pulse required for successful defibrillation is about 75 - 80 percent lower than the energy needed for single-shock defibrillation. Optimal conditions to control and suppress fibrillation based on stable rotors, hence, are similar to the ones in found for the case of an electrophysiological model displaying spatiotemporal chaos (“electrical turbulence”) in an earlier study (see P. Buran et al. Chaos 27, 113110 (2017)). The optimal pacing period is found to increase with increasing strength of the electrical field strength used in the model. The success probability also increases strongly until the fourth or fifth pulse administered, which is strongly correlated to an observed increase of the fraction of re-excitable tissue with each subsequent pulse. Monitoring the fraction of excitable tissue in the model as key quantity of the excitable medium, moreover, enabled us to successfully predict the optimal pacing period for defibrillation.


2021 ◽  
Author(s):  
Michael Monaghan

Defined ordered structures for biomaterials and tissue engineering applications can be achieved by a variety of techniques, one of which includes the electrohydrodynamic (EHD)-based application of melt electrowriting (MEW), the extrusion of a molten polymer filament under pressure across a defined electric field. In this study, we investigate how to translate small fibremeshes which are usually formed on flat surfaces, to curved contours that would have more applicability to human anatomical structures. By modelling the electric field strength associated with the MEW process, we found that incorporation of a non conductive three-dimensional (3D) custom printed mould on the conductive collector plate offers the ability to accurately print patterns on non-flat surfaces successfully. Importantly, while the electric field strength is a constant in the MEW process; the electrostatic behaviour of the deposited polymer has the greatest impact on the accuracy of fibre patterning and stacking. Consequently, controlled fibre deposition was exhibited, provided that a constant electrical field strength and a continuous vertical distance between the nozzle and the mould is maintained.Overall, this study establishes the groundwork to support further developments in MEW technologies, from flat to anatomically relevant 3D structures in the fields of regenerative medicine and biofabrication.


2021 ◽  
pp. 1-16
Author(s):  
Wilson S. Clayton

Abstract This paper presents a feasibility study of in situ field measurements of unsaturated meltwater percolation flux within the vertical profile of a snowpack, using the self-potential (SP) method. On-site snowmelt column tests calibrated the SP measurements. The SP data measured electrical field strength with an electrode spacing of 20 cm, and coincident water saturation (Sw) measurements using time domain reflectometry allowed calculation of SP-modeled vertical percolation flux (qsp), expressed as Darcy velocity. The results reflected transient diurnal snowmelt dynamics, with peak flux lagging arrival of a saturation wetting front. Peak daily qsp was 60 to >300 mm d−1, whereas daily snowmelt was 20–50 mm w.e. Surface refreezing events appeared to cause upward flow, possibly representing water redistribution toward the freezing boundary. Calculated fluxes were comparable to actual fluxes, although average errors ranged from −15 to +46% compared to average of melt expected from surface energy-balance and ablation stake measurements. By advancing method development to measure unsaturated meltwater percolation flux in snowpacks this study creates opportunities to study fundamental snowmelt processes, may improve mathematical modeling and may supplement glacier mass-balance studies and studies of snowmelt interactions with avalanches, groundwater and surface water.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Yue Sun ◽  
Xuanwu Kang ◽  
Shixiong Deng ◽  
Yingkui Zheng ◽  
Ke Wei ◽  
...  

Gallium nitride (GaN) has attracted increased attention because of superior material properties, such as high electron saturation velocity and high electrical field strength, which are promising for high-power microwave applications. We report on a high-performance vertical GaN-based Schottky barrier diode (SBD) and its demonstration in a microwave power limiter for the first time. The fabricated SBD achieved a very low differential specific on-resistance (RON,sp) of 0.21 mΩ·cm2, attributed to the steep-mesa technology, which assists in reducing the spacing between the edge of the anode and cathode to 2 μm. Meanwhile, a low leakage current of ~10−9 A/cm2@−10 V, a high forward current density of 9.4 kA/cm2 at 3 V in DC, and an ideality factor of 1.04 were achieved. Scattering parameter measurements showed that the insertion loss (S21) was lower than −3 dB until 3 GHz. In addition, a microwave power limiter circuit with two anti-parallel diodes was built and measured on an alumina substrate. The input power level reached 40 dBm (10 watts) in continuous-wave mode at 2 GHz, with a corresponding leakage power of 27.2 dBm (0.5 watts) at the output port of the limiter, exhibiting the great potential of GaN SBD in microwave power limiters.


2021 ◽  
pp. 108201322199161
Author(s):  
Naciye Kutlu

In this study, the ohmic heating system was used as a novel application for osmotic dehydration of quince. After osmotic dehydration, samples were dried by microwave. In this regard, the effects of process variables such as electrical field strengths (20, 30 and 40 V/cm), holding time (10, 20 and 30 minutes), microwave power (90, 180 and 270 W) and sucrose concentration (0%, 25% and 50%) on dielectric constant, dielectric loss factor, rehydration ratios, total phenolic compounds and color values were investigated by response surface methodology (RSM). Optimum conditions were found as 40 V/cm electrical field strength, 30 min holding time, 16.67% sucrose concentration and 270 W microwave power. Total phenolic content, rehydration ratio, color differences and dielectric properties of the novel method were found to be higher than that of control. Moreover, Midilli and Wang & Sing models gave the superior fit to the moisture ratio data obtained during drying.


Sign in / Sign up

Export Citation Format

Share Document