resistance modeling
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

Muzzle voltage is an essential diagnostic tool used in both contact resistance modeling and transition determination. However, it is challenging to stem the necessary meanings from the collected measurements. In this study, EMFY-3 launch experiments are used to model muzzle voltage characteristics to understand the transition mechanism better. These experiments have muzzle energies in the range between 1.69-2.85 MJ in ASELSAN Electromagnetic Launcher Laboratory. Six different launch tests with various rail current waveforms that ranged between 1.5-2.1 MA are used to investigate different scenarios. Some parameters which affect muzzle voltage are calculated with the 3-D Finite Element Method (FEM), i.e., rail mutual inductance $\mathrm{L_m}$. Muzzle voltages are decomposed into subsections; each subsection is calculated with proper models. Simulation results are coherent with experimental measurements. Findings are compared with previous studies, and differences are explained with possible reasons. Even though we could not conclusively resolve which physical quantity starts to transition, the study showed that transition does not form a specific muzzle velocity, armature action integral, or down-slope rail current ratio.


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

Muzzle voltage is an essential diagnostic tool used in both contact resistance modeling and transition determination. However, it is challenging to stem the necessary meanings from the collected measurements. In this study, EMFY-3 launch experiments are used to model muzzle voltage characteristics to understand the transition mechanism better. These experiments have muzzle energies in the range between 1.69-2.85 MJ in ASELSAN Electromagnetic Launcher Laboratory. Six different launch tests with various rail current waveforms that ranged between 1.5-2.1 MA are used to investigate different scenarios. Some parameters which affect muzzle voltage are calculated with the 3-D Finite Element Method (FEM), i.e., rail mutual inductance $\mathrm{L_m}$. Muzzle voltages are decomposed into subsections; each subsection is calculated with proper models. Simulation results are coherent with experimental measurements. Findings are compared with previous studies, and differences are explained with possible reasons. Even though we could not conclusively resolve which physical quantity starts to transition, the study showed that transition does not form a specific muzzle velocity, armature action integral, or down-slope rail current ratio.


2021 ◽  
Author(s):  
Xinlei Zhang ◽  
Haining Ye ◽  
Yan Zhao ◽  
Haifeng Zhang

Abstract A tunable linear-to-circular polarization converter (LTCPC) for the terahertz (THz) regime which consists of two conductive layers and a graphene transmissive metasurface layer separated by two dielectric layers is reported in this work. The equivalent surface resistance modeling method is adopted to investigate the peculiar electronic properties of graphene. The simulation results show that when the Fermi energy (Ef) is 1.1 eV, the linearly-polarized wave can be transformed into the circularly-polarized wave in the working band ranging from 0.9498 THz to 1.3827 THz (the relative bandwidth is 37.1%) with axial ratio (AR) less than 3 dB. Moreover, the bandwidth can be regulated to the desired one by varying the Fermi level of graphene metasurface via a bias voltage rather than manually modifying the structure. We have analyzed the mechanism of the polarization conversion, especially, the magnitudes and the phase difference of cross- and co-polarization transmission coefficients, AR curves, and surface current diagrams at y-polarized incidence. Our findings open up promising possibilities towards the realization of graphene controllable devices for polarization modulation, which has advantages of adjustability over traditional devices.


2021 ◽  
Vol 20 ◽  
pp. S195
Author(s):  
E. Garcia ◽  
M. Muhlebach ◽  
R. Sharma ◽  
A. Khoei ◽  
G. Rao

2021 ◽  
Vol 230 ◽  
pp. 111272
Author(s):  
Deniz Turkay ◽  
Konstantin Tsoi ◽  
Ergi Donercark ◽  
Rasit Turan ◽  
Selcuk Yerci

Author(s):  
Behnam Jafari Touchaei ◽  
Tara Ghafouri ◽  
Negin Manavizadeh ◽  
Farshid Raissi ◽  
Maziar Ahmadi Zeidabadi

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 538
Author(s):  
Malal Kane ◽  
Ebrahim Riahi ◽  
Minh-Tan Do

This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted.


Sign in / Sign up

Export Citation Format

Share Document