hybrid biomaterials
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 26 ◽  
pp. 101304
Author(s):  
Meng Luo ◽  
Konstantin Shaitan ◽  
Xiaoyan Qu ◽  
Anton P Bonartsev ◽  
Bo Lei

2021 ◽  
pp. 73-87
Author(s):  
Toshihiro Akaike ◽  
Shunji Kasai ◽  
Shinji Nishizawa ◽  
Akira Kobayashi ◽  
Teruo Miyata

Nanomedicine ◽  
2021 ◽  
Author(s):  
Franco Tacchi ◽  
Josué Orozco-Aguilar ◽  
Danae Gutiérrez ◽  
Felipe Simon ◽  
Javier Salazar ◽  
...  

Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1886
Author(s):  
Michele D. M. Lombardo ◽  
Laura Mangiavini ◽  
Giuseppe M. Peretti

Menisci are crucial structures for knee homeostasis. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible; only the meniscus tissue that is identified as unrepairable should be excised, and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The aim of this literature review is to analyze possible therapeutic and surgical options that go beyond traditional meniscal surgery: from scaffolds, which are made of different kind of polymers, such as natural, synthetic or hydrogel components, to new technologies, such as 3-D printing construct or hybrid biomaterials made of scaffolds and specific cells. These recent advances show that there is great interest in the development of new materials for meniscal reconstruction and that, with the development of new biomaterials, there will be the possibility of better management of meniscal injuries


2021 ◽  
Vol 11 (19) ◽  
pp. 9311
Author(s):  
Michelina Catauro ◽  
Ylenia D’Errico ◽  
Antonio D’Angelo ◽  
Ronald J. Clarke ◽  
Ignazio Blanco

The aim of this work was the synthesis of hybrid materials of iron (II)-based therapeutic systems via the sol-gel method. Increasing amounts of polyethylene glycol (PEG 6, 12, 24, 50 wt%) were added to SiO2/Fe20 wt% to modulate the release kinetics of the drug from the systems. Fourier-transform infrared (FTIR) spectroscopy was used to study the interactions between different components in the hybrid materials. The release kinetics in a simulated body fluid (SBF) were investigated, and the amount of Fe2+ released was detected via ultraviolet-visible spectroscopy (UV-Vis) after reaction with ortho-phenanthroline. Furthermore, biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated via the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using spectroscopy. Finally, the potential antibacterial properties of seven different materials against two different bacteria—E. coli and S. aureus—were investigated.


Author(s):  
Rongjie Wu ◽  
Haotao Li ◽  
Yuliang Yang ◽  
Qiujian Zheng ◽  
Shengliang Li ◽  
...  

Author(s):  
Manita Das ◽  
Archana Solanki ◽  
Ashwini Ganesh ◽  
Sonal Thakore

Author(s):  
Shal N

This review presents the recent advances and the current state-of-the-art of bioactive glass-based hybrid biomaterials for bone regeneration. Hybrid materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the filler phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.


2020 ◽  
Author(s):  
Laurens Vandebroek ◽  
Hiroki Noguchi ◽  
Kenichi Kamata ◽  
Jeremy R. H. Tame ◽  
Luc Van Meervelt ◽  
...  

AbstractThe controlled formation of protein supramolecular assemblies is challenging but it could provide an important route for the development of hybrid biomaterials. In this work, we demonstrate formation of well-defined complexes formed between the 8-fold symmetrical designer protein Tako8 and soluble metal-oxo clusters from the family of Anderson-Evans, Keggin and ZrIV- substituted Wells-Dawson polyoxometalates. A combination of x-ray crystallography and solution studies showed that metal-oxo clusters are able to serve as linker nodes for the bottom-up creation of protein based supramolecular assemblies. Our findings indicate that clusters with larger size and negative charge are capable of modulating the crystal packing of the protein, highlighting the need for a size and shape complementarity with the protein node for optimal alteration of the crystalline self-assembly.


Sign in / Sign up

Export Citation Format

Share Document