giant vesicles
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 84)

H-INDEX

51
(FIVE YEARS 8)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262555
Author(s):  
Md. Kabir Ahamed ◽  
Marzuk Ahmed ◽  
Mohammad Abu Sayem Karal

Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.


Author(s):  
Karthika S Nair ◽  
Neethu B Raj ◽  
K Madhavan Nampoothiri ◽  
Gayathri Mohanan ◽  
Silvia Acosta-Gutiérrez ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vincent Mukwaya ◽  
Stephen Mann ◽  
Hongjing Dou

AbstractAlthough the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.


2021 ◽  
Author(s):  
Huifang Wang ◽  
Chunrong Li ◽  
Minna Sun ◽  
Junxing Pan ◽  
Jinjun Zhang

2021 ◽  
pp. 2106633
Author(s):  
Ziliang Zhao ◽  
Debjit Roy ◽  
Jan Steinkühler ◽  
Tom Robinson ◽  
Reinhard Lipowsky ◽  
...  

2021 ◽  
Author(s):  
Ran Tivony ◽  
Marcus Fletcher ◽  
Kareem Al Nahas ◽  
Ulrich Keyser

Cell-sized vesicles like giant unilamellar vesicles (GUVs) are established as a promising biomimetic model for studying cellular phenomena in isolation. However, the presence of residual components and by-products, generated during vesicles preparation and manipulation, severely limits the utility of GUVs in applications like synthetic cells. Therefore, with the rapidly growing field of synthetic biology, there is an emergent demand for techniques that can continuously purify cell-like vesicles from diverse residues, while GUVs are being simultaneously synthesized and manipulated. We developed a microfluidic platform capable of purifying GUVs through stream bifurcation, where a stream of vesicles suspension is partitioned into three fractions - purified GUVs, residual components, and a washing solution. Using our purification approach, we showed that giant vesicles can be separated from various residues, that range in size and chemical composition, with a very high efficiency (e=0.99), based on size and deformability of the filtered objects. In addition, by incorporating the purification module with a microfluidic-based GUV-formation method, octanol-assisted liposome assembly (OLA), we established an integrated production-purification microfluidic unit that sequentially produces, manipulates, and purifies GUVs. We demonstrate the applicability of the integrated device to synthetic biology through sequentially fusing SUVs with freshly prepared GUVs and separating the fused GUVs from extraneous SUVs and oil droplets at the same time.


2021 ◽  
Author(s):  
Wan-Chih Su ◽  
Douglas Gettel ◽  
Andrew Rowland ◽  
Christine Keating ◽  
Atul Parikh

Abstract An astounding variety of cellular contexts converge to the process of liquid-liquid phase separation for the creation of new functional levels of organization. But the kinetic pathways by which intracellular phase separation proceeds – typically in physically confined and macromolecularly crowded volumes of topologically closed cellular and intracellular compartments –remain incompletely understood. Here, we monitor the dynamics of liquid-liquid phase separation of mixtures of phase-separating polymers (i.e., polyethyleneglycol and dextran) inside all-synthetic, cell-sized giant unilamellar vesicles in real-time. We dynamically trigger phase separation by subjecting an initially homogeneous polymer solution inside vesicles to an abrupt osmotic quench. The latter removes water and elevates polymer concentrations in the phase-coexistence regime thereby initiating a segregative phase separation of the polymers. We find that the ensuing relaxation – en route to the new equilibrium – is non-trivially modulated by a dynamic interplay between the coarsening of the evolving droplet phase and the interactive membrane boundary. The early trajectory of droplet coarsening exhibit significant acceleration, but a competing process of membrane-droplet interactions – one in which the membrane boundary is preferentially wetted by one of the incipient phases – dynamically arrests the progression and deforms the membrane. As a result, a novel multi-bud morphology, reminiscent of cellular blebs, decorate the vesicle surface. Furthermore, when the vesicles are composed of phase-separating mixtures of common lipids, the three-dimensional liquid-liquid phase separation within the vesicular interior becomes coupled to the membrane’s compositional degrees of freedom producing microphase-separated membrane textures. This coupling of bulk and surface phase separation processes suggests a new physical principle by which liquid-liquid phase separation inside living cells might be dynamically regulated and materially communicated inside-out to the cellular boundaries.


2021 ◽  
Author(s):  
Philip E. Jahl ◽  
Raghuveer Parthasarathy

The viscosity of lipid membranes sets the timescales of membrane-associated flows and therefore influences the dynamics of a wide range of cellular processes. Techniques to measure membrane viscosity remain sparse, however, and reported measurements to date, even of similar systems, give viscosity values that span orders of magnitude. To address this, we improve a method based on measuring both the rotational and translational diffusion of membrane-anchored microparticles and apply this approach and one based on tracking the motion of phase-separated lipid domains to the same system of phase-separated giant vesicles. We find good agreement between the two methods, with inferred viscosities within a factor of two of each other. Our technique uses ellipsoidal microparticles, and we show that the extraction of physically meaningful viscosity values from their motion requires consideration of their anisotropic shape. The validation of our method on phase-separated membranes makes possible its application to other systems, which we demonstrate by measuring the viscosity of bilayers composed of lipids with different chain lengths ranging from 14 to 20 carbon atoms, revealing a very weak dependence of two-dimensional viscosity on lipid size. The experimental and analysis methods described here should be generally applicable to a variety of membrane systems, both reconstituted and cellular.


2021 ◽  
Author(s):  
Ziliang Zhao ◽  
Debjit Roy ◽  
Jan Steinkuehler ◽  
Tom Robinson ◽  
Reinhard Lipowsky ◽  
...  

Molecular crowding is an inherent feature of the cell interior. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (polyethylene-glycol and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs loaded with macromolecules exhibit highly curved structures such as internal nanotubes. In addition, upon liquid-liquid phase separation as inside living cells, the membrane of GUVs encapsulating an aqueous two-phase system deforms to form apparent kinks at the contact line of the interface between the two aqueous phases. These structures, nanotubes and kinks, have dimensions below optical resolution and if resolved, can provide information about material properties such as membrane spontaneous curvature and intrinsic contact angle describing the wettability contrast of the encapsulated phases to the membrane. Previous experimental studies were based on conventional optical microscopy which cannot resolve these membrane and wetting proper-ties. Here, we studied these structures with super-resolution microscopy, namely stimulated emission depletion (STED) microscopy, together with microfluidic manipulation. We demonstrate the cylindrical nature of the nanotubes with unprecedented detail based on the superior resolution of STED and automated data analysis. The spontaneous curvature deduced from the nanotube diameters is in excellent agreement with theoretical predictions. Furthermore, we were able to resolve the membrane 'kink' structure as a smoothly curved membrane demonstrating the existence of the intrinsic contact angle. We find very good agreement between the directly measured values and the theoretically predicted ones based on the apparent contact angles on the micrometer scale. During different stages of cellular events, biomembranes undergo a variety of shape transformations such as the formation of buds and nanotubes regulated by membrane necks. We demonstrate that these highly curved membrane structures are amenable to STED imaging and show that such studies provide important insights in the membrane properties and interactions underlying cellular activities.


Sign in / Sign up

Export Citation Format

Share Document