oscillating motion
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 2)

10.5219/1711 ◽  
2022 ◽  
Vol 16 ◽  
pp. 15-26
Author(s):  
Igor Palamarchuk ◽  
Oksana Zozulyak ◽  
Mikhailo Mushtruk ◽  
Ievgenii Petrychenko ◽  
Nataliia Slobodyanyuk ◽  
...  

The process of intensifying dehydration of pectin-containing raw materials by using centrifugation with simultaneous application of low-frequency oscillations to the working container creates an electroosmotic effect in unilateral diffusion to improve the filtration process. It is established that to reduce the technological resistance in the presented methods; it is necessary to create a fluidized bed of products due to the oscillating motion of the working capacity. An experimental vibration unit has been developed to determine the rational parameters of the vibrocentric moisture removal process using the electroosmotic effect. It is proved that the complex of the designed equipment provides consecutive carrying out of three-stage vibration filtration-convective drying of high-moisture production by an alternation of action of a stream of the heat carrier, an electromagnetic field, low-frequency fluctuations. According to the research results, the dependences of the kinetics of the moisture diffusion process on the electric field strength are obtained; frequency of electric current and duty cycle of pulses, which allowed to optimize the process parameters according to the criteria of minimizing energy consumption. It was found that the processing time to achieve the desired humidity with the application of vibration, filtration, and electroosmotic effect was twice less than for filtration drying in a fixed bed. In combination with the noted physical and mechanical factors, the proposed technology improves the technical and economic parameters of the studied process.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
I Palamarchuk ◽  
◽  
V Vasyliv ◽  
V Sarana ◽  
M Mushtruk ◽  
...  

The main effects of the developed design for vibratory separator: the increased driving force in the process of bulk material separation in this work, achieved by providing the working cylindrical-conical container with vibrational motion; improving the conditions for the passage of product particles through openings, achieved by providing the sieve surface with volume oscillations; reduction of energy consumption and improvement of operating conditions for support nodes during the operation of the designed vibrating screen, achieved due to the installation of additional elastic elements between the separator body and bearing assemblies of the vertical drive shaft in vibration exciter. Providing the working bodies of the designed vibrating screen with volume oscillating motion allows increasing the performance and quality of the separation process of solid bulk materials. To determine the rational parameters for vibration screening process, the equations of motion of working bodies as a conical sieve surface were obtained using the method of the Lagrange equations of the second order. When applying solutions of the Cauchy problem for linear nonhomogeneous differential equations, the solution of the latter was obtained. The obtained dependences of oscillation amplitudes, vibration velocity and vibration acceleration, and the intensity of oscillating motion allowed us to perform a mathematical analysis for power and energy parameters of vibration drive in the developed separator. The inclined placement of the conical sieve surface allows for spatial gyration or circular translational motion, which makes it possible to realize the advantages of volumetric separation of bulk materials. The results of the conducted analytical study made it possible to substantiate the optimal inclination angle for working sieve surface. Based on our analysis, the design parameters of vibration exciter were substantiated and clarified, and the design of this technical system was demonstrated.


Author(s):  
Said Bellafkih ◽  
Abdelhak Hadj-Sahraoui ◽  
Pierre Kulinski ◽  
Pierre Dumoulin ◽  
Stephane Longuemart

Abstract In this paper, we describe the realisation and the testing of an electrocaloric effect based refrigeration prototype. The prototype makes use of Active Electrocaloric Regenerator (AER) made of commercially available MultiLayer ceramics and exploits the oscillating motion of a heat transfer fluid in a thermodynamic refrigeration cycle. The setup allows the adjustment of various parameters and the effect of the frequency of the cycle as well as the volume displaced of the heat transfer fluid has been evidenced. An amplification regenerative factor of 1.25 has been reached, comparable and slightly higher to those of previously proposed electrocaloric refrigerator prototypes.


Author(s):  
Boris Kichatov ◽  
Alexey Korshunov ◽  
Vladimir Sudakov ◽  
Vladimir Gubernov ◽  
Andrey Kolobov ◽  
...  

Author(s):  
Gerardo Paolillo ◽  
Carlo Salvatore Greco ◽  
Gennaro Cardone ◽  
Tommaso Astarita

Sweeping jets are oscillating jets generated by fluidic oscillators, i.e., devices designed to produce an oscillation of the flow without the use of any moving parts (Raghu, 2013). A typical configuration of such devices consists of an expansion chamber connected to a high-pressure supply via a converging nozzle and provided with feedback channels. The oscillating motion in the expansion chamber is triggered by an inherent flow instability and sustained by the flow rate across the feedback channels. Recently, sweeping jets have been studied in flow control applications for noise reduction, separation and circulation control over airfoils, control of resonant cavity oscillations and deflection of jets. The advantageous features of fluidic actuators, among which are the wide range of operating frequencies (up to kHz with meso-scale) and the distributed momentum addition, have also stimulated an increasing interest in their application to electronics cooling. Several recent studies on the convective heat transfer from impinging sweeping jets (e.g., Hossain et al., 2018; Park et al., 2018) have shown that, compared to conventional round jets, they offer higher cooling rates with better uniformity at least for small jet-to-plate spacings.


2021 ◽  
Vol 9 ◽  
Author(s):  
Houjun Gong ◽  
Mengqi Wu

Marine reactors are subjected to additional motions due to ocean conditions. These additional motions will cause large fluctuation of flow rate and change the coolant flow field, making the system unstable. Therefore, in order to understand the effect of oscillating motion on the flow characteristics, a numerical simulation of fluid flow is carried out based on a full-scale three-dimensional oscillating marine reactor. In this study, the resistance coefficients of the lattice, rod buddle and steam generator are fitted, and the distribution of flow rate, velocity as well as pressure in different regions is investigated through the standard model. After additional oscillation is introduced, the flow field in an oscillating reactor is presented and the effect of oscillating angle and elevation on the flow rate is investigated. Results show that the oscillating motion can greatly change the flow field in the reactor; most of the coolant circulates in the downcommer and lower head with only a small amount of coolant entering the core; the flow fluctuation period is consistent with the oscillating period, and the flow variation patterns under different oscillating conditions are basically the same; since the flow amplitude is related to oscillating speed, the amplitude of flow rate rises when decreasing the maximum oscillating angle; the oscillating elevation has little effect on the flow rate.


Author(s):  
Petro Lizunov ◽  
Valentyn Nedin

The paper presents the investigation results of the vibro-impact loads’ influence on the stability of vibro-drilling machine’ drill-rod in the process of well in hard rock. The drilling process of such wells is significantly facilitated in case of vibro-impact action. The destroying of the rocks during the vibro-rotary drilling occurs via the complex effect of the vibration impulses and rotational motion. In this way, the task of such drill-rod study stability has actuality. In this case, the various modes of vibration and stability loss are possible. In this regard, the study was done by developed software, in which a technique of computer simulation of the oscillating motion of considerable length rotating rods under the action of axial periodic loads is implemented. Such software gives the possibility to model the oscillatory motion of rotating rods and determine the parameters by witch the dynamic stability loss of the studied system can occur. Using this software the diagrams with regions of stable and unstable motion of the rotating rod were drawn for different parameters of the considered system. The process of oscillation is considered in space with account of inertia forces and geometric nonlinearity of the rod. It is shown, that on certain rotational speeds and frequencies of vibro-impact load there are ranges of unstable motion where the run of equipment can inevitably lead to destruction. The obtained results have been analyzed. The conclusion about the possibility of running the equipment in certain frequency ranges is made.


Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 50
Author(s):  
Josef Prost ◽  
Ulrike Cihak-Bayr ◽  
Ioana Adina Neacșu ◽  
Reinhard Grundtner ◽  
Franz Pirker ◽  
...  

For a tribological experiment involving a steel shaft sliding in a self-lubricating bronze bearing, a semi-supervised machine learning method for the classification of the state of operation is proposed. During the translatory oscillating motion, the system may undergo different states of operation from normal to critical, showing self-recovering behaviour. A Random Forest classifier was trained on individual cycles from the lateral force data from four distinct experimental runs in order to distinguish between four states of operation. The labelling of the individual cycles proved to be crucial for a high prediction accuracy of the trained RF classifier. The proposed semi-supervised approach allows choosing within a range between automatically generated labels and full manual labelling by an expert user. The algorithm was at the current state used for ex post classification of the state of operation. Considering the results from the ex post analysis and providing a sufficiently sized training dataset, online classification of the state of operation of a system will be possible. This will allow taking active countermeasures to stabilise the system or to terminate the experiment before major damage occurs.


2020 ◽  
Vol 84 (12) ◽  
pp. 1453-1458
Author(s):  
I. E. Sedova ◽  
E. S. Sedov ◽  
S. M. Arakelian ◽  
A. V. Kavokin

Sign in / Sign up

Export Citation Format

Share Document