speed fluctuations
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013201
Author(s):  
Amir Shee ◽  
Debasish Chaudhuri

Abstract We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein–Uhlenbeck process for active speed generation. Using a Laplace transform approach, we describe and use a Fokker–Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of several such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze the dynamical crossovers, determined by the orientational persistence of activity, speed fluctuation and relaxation. The kurtosis of displacement shows positive and negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed and orientational fluctuations, respectively.


2021 ◽  
Vol 33 (12) ◽  
pp. 127107
Author(s):  
Jaeheon Jeong ◽  
Jeongwoo Ko ◽  
Huisang Cho ◽  
Soogab Lee

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaqi Liu ◽  
Reiji Kimura ◽  
Jing Wu

Gravels can protect soil from wind erosion, however, there is little known about the effects of fine-grained gravel on aerodynamic characteristics of the near-surface airflow. Drag coefficient, wind-speed gradient, and turbulent transfer coefficient over different coverages of gravel surfaces were investigated in a compact boundary-layer wind tunnel. The drag coefficient of the fine-grained gravel surface reached the maximum value at 15% coverage and then tended to stabilize at gravel coverage 20% and greater. At a height of 4 cm, near-surface airflow on gravel surfaces can be divided clearly into upper and lower sublayers, defined as the inertial and roughness sublayers, respectively. The coefficient of variation of wind speed over gravel surfaces in the roughness sublayer was 8.6 times that in the inertial sublayer, indicating a greater effect of gravel coverage on wind-speed fluctuations in the lower layer. At a height of 4 cm, wind-speed fluctuations under the observed wind speeds were independent of changes in gravel coverage. In addition, an energy-exchange region, where sand particles can absorb more energy from the surrounding airflow, was found between the roughness and inertial sublayers, enhancing the erosional state of wind-blown sand. This finding can be applied to evaluate the aerodynamic stability of the gravel surface in the Gobi Desert and provide a theoretical basis for elucidation of the vertical distributions of wind-blown sand flux.


2021 ◽  
Vol 80 (1) ◽  
pp. 71-82
Author(s):  
Ignacio Martínez-Navarro ◽  
Antonio Montoya-Vieco ◽  
Eladio Collado ◽  
Barbara Hernando ◽  
Carlos Hernando

Abstract The study was aimed at comparing pacing adopted by males and females in a 107-km mountain ultramarathon and assessing whether pacing-related variables were associated with intracompetition body weight changes and performance. Forty-seven athletes (29 males; 18 females) were submitted to a cardiopulmonary exercise test before the race. Athletes were also weighted before the start of the race, at three midpoints (33 km, 66 km and 84 km) and after the race. Pacing was analyzed using absolute and relative speeds and accelerometry-derived sedentary time spent during the race. Results showed that females spent less sedentary time (4.72 ± 2.91 vs. 2.62 ± 2.14%; p = 0.035; d = 0.83) and displayed a smaller body weight loss (3.01 ± 1.96 vs. 4.37 ± 1.77%; p = 0.048; d = 0.77) than males. No significant sex differences were revealed for speed variability, absolute and relative speed. In addition, finishing time was correlated with: speed variability (r = 0.45; p = 0.010), index of pacing (r = -0.63; p < 0.001) and sedentary time (r = 0.64; p < 0.001). Meanwhile, intracompetition body weight changes were related with both the absolute and relative speed in the first and the last race section. These results suggest that females, as compared with males, take advantage of shorter time breaks at aid stations. Moreover, performing a more even pacing pattern may be positively associated with performance in mountain ultramarathons. Finally, intracompetition body weight changes in those races should be considered in conjunction with running speed fluctuations.


2021 ◽  
Author(s):  
Deepak Bhat ◽  
Samuel Hauf ◽  
Charles Plessy ◽  
Yohei Yokobayashi ◽  
Simone Pigolotti

Replisomes are multi-protein complexes that replicate genomes with remarkable speed and accuracy. Despite their importance, the dynamics of replisomes along the genome is poorly characterised, especially in vivo. In this paper, we link the replisome dynamics with the DNA abundance distribution measured in an exponentially growing bacterial population. Our approach permits to accurately infer the replisome dynamics along the genome from deep sequencing measurements. As an application, we experimentally measured the DNA abundance distribution in Escherichia coli populations growing at different temperatures. We find that the average replisome speed increases nearly five-fold between 17°C and 37°C. Further, we observe wave-like variations of the replisome speed along the genome. These variations are correlated with previously observed variations of the mutation rate along the genome. We interpret this correlation as a speed--error trade-off and discuss its possible dynamical origin. Our approach has the potential to elucidate replication dynamics in E. coli mutants and in other bacterial species.


2021 ◽  
Author(s):  
Piotr Laskowski ◽  
Magdalena Zimakowska-Laskowska ◽  
Damian Zasina

The aim of the study is to present the results of mathematically modeled influence of the average speed on the pollutant released in the air during the cold-start process. There were taken into consideration the emission from the passenger cars (PCs) for the different fuel types, vehicles’ segments (including hybrid), and the Euro standard. In the article the simulations was performed using the COPERT software, as well as WLTP-based research. The modelling results there are presented show that the change in average speed has a significant effect on air pollutant (CO2, NOx, NMVOC, CO) emissions released in cold-start process. Furthermore, the results show that pollutants’ emissions are sensitive to average speed fluctuations.


Author(s):  
Morteza Ghaseminezhad ◽  
Aref Doroudi ◽  
Seyed Hossein Hosseinian ◽  
Alireza Jalilian

Purpose Voltage fluctuation (flicker) is a power quality disturbance that can produce several undesirable effects on industrial equipment. This paper aims to present the methodology and results of investigations undertaken to examine the speed and torque of an induction motor (IM) under voltage fluctuation conditions. Design/methodology/approach The IM response to different characteristics of voltage fluctuations is presented. It will be shown that under a special condition the IM torque can even reach two times the rated torque. To show how this occurs, a qualitative discussion is given on the motor response by linearized equations. Findings The small-signal analysis was used to determine the frequency which leads to maximum speed fluctuations. It was shown that, if the motor is excited with a modulation frequency (resonant frequency) which is one of its natural frequencies (modes), the mode will act as a fluctuating amplifier and greatly increase the amplitude of torque and speed fluctuations. Sensitivity analysis is also carried out to evaluate the influence of motor parameters on the resonance frequency. The results show that the resonance frequency is not affected at all by the changes in magnetizing reactance. This has been shown that magnetic saturation does not have any impact on the resonance frequency. The most effective parameters are rotor and stator resistances. Originality/value With the increasing popularity and use of arc furnace loads in the metallurgy industry and due to the wide application of large IMs in the industry, it is possible that the frequency of torque pulsation locates near a natural frequency and then will create an oscillation with a large magnitude, potentially leading to accelerated fatigue or severe damage of shaft. However, if this phenomenon occurs in industries, the resonance frequency must be filtered from the input voltage. Experimental results on a 1.1 kW, 380 V, 50 Hz, 2 pole IM are used to validate the accuracy of simulation results.


2021 ◽  
Vol 263 (3) ◽  
pp. 3335-3343
Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Gear induced noise represents a major part of overall automotive drivetrain noise. Gear rattle noise is caused by strongly nonlinear dynamic behavior of the gear pair, primarily due to external torque of speed fluctuations under lightly loaded conditions. Such loading conditions cannot be generated by using the conventional gear dynamics test set-ups that employ power recirculating gearbox arrangements or conventional electric motors. In this paper, a new test set-up is introduced to emulate the actual torque/velocity fluctuations of the input and/or output members of a gear train through three-phase synchronous servo-motors. In addition to establishing backlash boundaries, a pair of absolute encoders are used to measure the relative motions of the gears as well as their impacts along the drive and coast sides flanks or gears. Torsional vibratory behavior of a gear pair is presented at different backlash values under several input/output fluctuation conditions along with the companion sound pressure measurements.


2021 ◽  
Author(s):  
Marianne Grognot ◽  
Anisha Mittal ◽  
Mattia Amyra Mah'moud ◽  
Katja M Taute

Cholera disease is caused by Vibrio cholerae infecting the lining of the small intestine and results in severe diarrhea. V. cholerae's swimming motility is known to play a crucial role in pathogenicity and may aid the bacteria in crossing the intestinal mucus barrier to reach sites of infection, but the exact mechanisms are unknown. The cell can be either pushed or pulled by its single polar flagellum, but there is no consensus on the resulting repertoire of motility behaviors. We use high-throughput 3D bacterial tracking to observe V. cholerae swimming in buffer, in viscous solutions of the synthetic polymer PVP, and in mucin solutions that may mimic the host environment. We perform a statistical characterization of its motility behavior on the basis of large 3D trajectory datasets. We find that V. cholerae performs asymmetric run-reverse-flick motility, consisting of a sequence of a forward run, reversal, and a shorter backward run, followed by a turn by approximately 90°, called a flick, preceding the next forward run. Unlike many run-reverse-flick swimmers, V. cholerae's backward runs are much shorter than its forward runs, resulting in an increased effective diffusivity. We also find that the swimming speed is not constant, but subject to frequent decreases. The turning frequency in mucin matches that observed in buffer. Run-reverse-flick motility and speed fluctuations are present in all environments studied, suggesting that these behaviors may also occur in natural aquatic habitats as well as the host environment.


Sign in / Sign up

Export Citation Format

Share Document