mechatronic systems
Recently Published Documents


TOTAL DOCUMENTS

1417
(FIVE YEARS 301)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 31 (1) ◽  
pp. 1-24
Author(s):  
Birgit Vogel-Heuser ◽  
Eva-Maria Neumann ◽  
Juliane Fischer

automated Production Systems (aPS) are highly complex, mechatronic systems that usually have to operate reliably for many decades. Standardization and reuse of control software modules is a core prerequisite to achieve the required system quality in increasingly shorter development cycles. However, industrial case studies in aPS show that many aPS companies still struggle with strategically reusing software. This paper proposes a metric-based approach to objectively measure the m aturity of i ndustrial IEC 61131-based co ntrol s oftwar e in aPS (MICOSE4aPS) to identify potential weaknesses and quality issues hampering systematic reuse. Module developers in the machine and plant manufacturing industry can directly benefit as the metric calculation is integrated into the software engineering workflow. An in-depth industrial evaluation in a top-ranked machine manufacturing company in food packaging and an expert evaluation with different companies confirmed the benefit of efficiently managing the quality of control software.


2022 ◽  
pp. 1-39
Author(s):  
Zhen Song ◽  
Zirong Luo ◽  
Guowu Wei ◽  
Jianzhong Shang

Abstract Mobile robots can replace rescuers in rescue and detection missions in complex and unstructured environments and draw the interest of many researchers. This paper presents a novel six-wheeled mobile robot with a reconfigurable body and self-adaptable obstacle-climbing mechanisms, which can reconfigure itself to three locomotion states to realize the advantages of terrain adaptability, obstacle crossing ability and portability. Design criteria and mechanical design of the proposed mobile robot are firstly presented, based on which the geometry of the robot is modelled and the geometric constraint, static conditions and motion stability condition for obstacle crossing of the robot are derived and formulated. Numerical simulations are then conducted to verify the geometric passing capability, static passing capability and motion stability and find feasible structure parameters of the robot in obstacle crossing. Further, a physical prototype of the proposed mobile robot is developed and integrated with mechatronic systems and remote control. Using the prototype, field experiments are carried out to verify the feasibility of the proposed design and theoretical derivations. The results show that the proposed mobile robot satisfies all the criteria set and is feasible for applications in disastrous rescuing scenarios.


Author(s):  
Hamid Hamdani ◽  
Bouchaïb Radi ◽  
Abdelkhalak El Hami

The complexity challenges of mechatronic systems justify the need of numerical simulation to efficiently assess their reliability. In the case of solder joints in electronic packages, finite element methods (FEM) are commonly used to evaluate their fatigue response under thermal loading. Nevertheless, Experience shows that the prediction quality is always affected by the variability of the design variables. This paper aims to benefit from the statistical power of the R software and the efficiency of the finite element software ANSYS©, to develop a probabilistic approach to predicting the solder joint reliability in Mechatronic Packaging taking into account the uncertainties in material properties. The coupling of the two software proved an effective evaluation of the reliability of the T-CSP using the proposed method.


2021 ◽  
pp. 277-286
Author(s):  
Olga P. Tomchina

In the paper the problem of feedback control of vibrational fields in a vibration unit is analyzed taking into account the influence of the elasticity of cardan shafts, the drive dynamics, saturation for control torques. In addition, the synthesized rotor synchronization control algorithm uses the estimates of a non-stationary observer, which makes it possible to implement it practically on a two-rotor vibration unit SV-2. The performance of the closed loop mechatronic systems is examined by simulation for the model of the two-rotor vibration unit SV-2.


2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Simon Züst ◽  
Michael Huonder ◽  
Shaun West ◽  
Oliver Stoll

State of the art mechatronic systems are complex assemblies of various parts and sub-systems. In such an interconnected system, even relatively cheap parts can have a major impact on the overall performance due to unexpected failure. Hence, lifecycle management has major implications on the successful modification of existing products. Potential savings due to changes in production and procurement must be compared to the implied risk of products failing in the field due to these changes. This work documents a generic approach for risk assessment based on the distribution of the expected savings and incident costs over the whole lifecycle. To do so, a stochastic model is introduced to quantify the expected savings and costs given a non-risk-free product modification. Using a Monte Carlo simulation, the effects of uncertainty are incorporated into the risk management. The model and simulation are deployed within an industrial use case. The application demonstrates both the appropriateness of the tool and its useability.


2021 ◽  
Author(s):  
Pavel Kuc'ko ◽  
V. Zolnikov ◽  
Svetlana Evdokimova ◽  
O. Oksyuta ◽  
Aleksey Platonov

The article considers the current state and the main promising areas of scientific and practi-cal developments in the field of radio electronics. For the space application of mechatronic systems, the microcircuits are characterized by multi-nomenclature low-volume indicators. To create a high-ly reliable electronic component base, it is necessary to ensure resistance to the fields of ionizing radiation from space, a wide range of temperatures and mechanical stresses. This requires the crea-tion of ECBs for space applications that are resistant to these external influencing factors.


2021 ◽  
Vol 13 (24) ◽  
pp. 13547
Author(s):  
Karolina Dąbrowska-Żółtak ◽  
Jerzy Wojtowicz ◽  
Stefan Wrona

Today more than half of the world’s population lives in cities not yet ready for the massive growth and adaptation required to meet global urbanization predicted for the next decades. The planning, design, and urban governance must urgently evolve. Future cities should become more efficient, inclusive, and sustainable. The intelligent town we anticipate combines the concepts of new information flow as well as research proposals for the design, upgrade of buildings and municipal infrastructure using robots and mechatronic systems at the scale of dwelling, building, neighborhood, district or town. This article presents the conceptual framework for the role of kinetic and responsive design at the scale of small urban areas, taking into account dynamic adaptation to users’ needs and changing environmental conditions across a day, week, month and year.


Mechatronics ◽  
2021 ◽  
Vol 80 ◽  
pp. 102672
Author(s):  
Wolfgang Kemmetmüller ◽  
Andreas Kugi ◽  
Tom Oomen ◽  
Georg Schitter ◽  
Tsu-Chin Tsao

Sign in / Sign up

Export Citation Format

Share Document