wide speed range
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 80)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 340
Author(s):  
Zonghan Yu ◽  
Guoping Huang ◽  
Ruilin Wang ◽  
Omer Musa

In this work, a new spillage-adaptive bump inlet concept is proposed to widen the speed range for hypersonic air-breathing flight vehicles. Various approaches to improve the inlet start-ability are summarized and compared, among which the bump-inlet pattern holds the merits of high lift-to-drag ratio, boundary layer diversion, and flexible integration ability. The proposed spillage-adaptive concept ensures the inlet starting performance by spilling extra mass flow away at low speed number conditions. The inlet presetting position is determined by synthetically evaluating the flow uniformity and the low-kinetic-energy fluid proportion. The numerical results show that the flow spillage of the inlet increases with the inflow speed decrease, which makes the inlet easier to start at low speed conditions (M 2.5–6.0). The effects of the boundary layer on spillage are also studied in this work. The new integration pattern releases the flow spillage potentials of three-dimensional inward-turning inlets by reasonably arranging the inlet compression on the bump surface. Future work will focus on the spillage-controllable design method.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110626
Author(s):  
Biao Zhang ◽  
Shikuan Song ◽  
Chenghu Jing ◽  
Dong Xiang

The non-circular planetary gear hydraulic motor is a low-speed and high-torque hydraulic motor with excellent performance. It has the characteristics of a wide speed range, low weight and is widely used in various fields. Aiming to solve the problem of there being no intuitive formula for calculating the displacement of the non-circular planetary gear hydraulic motor at present, based on the analysis of the effects of structural parameters on the displacement of the motor, this paper proposes a formula for calculating the displacement of a non-circular planetary gear hydraulic motor when the pitch curve of the sun wheel is a high-order ellipse. The formula allows the direct calculation and prediction of the displacement of the motor. To improve the unit volume displacement of the hydraulic motor (which determines the power density of the motor), based on the analysis of the unit volume displacement constraints, an optimization equation is proposed by adding an optimization factor to the original equation of the pitch curve of the sun wheel. It is seen that the addition of the new optimization factor eliminates the self-interlacing of the pitch curve of inner ring gear. This elimination increases the unit volume displacement of the motor.


Author(s):  
Faliang Liu ◽  
Xiaoning Ma ◽  
Luming Cheng ◽  
Mingqiao Wang ◽  
Guangyuan Qiao ◽  
...  

2021 ◽  
pp. 1-25
Author(s):  
HC. Yuan ◽  
JS. Zhang ◽  
YF. Wang ◽  
GP. Huang

Abstract The design of a two-dimensional supersonic inlet with large bleed window at low Mach number was developed. Numerical simulation and wind tunnel experiments were carried out to investigate the aerodynamic performance and variable geometric rules of the inlet. The result indicates that the single-degree-of-freedom variable geometry scheme adopted in this paper guarantees the steady work of the inlet over a wide speed range. The large bleed window caused by rotation of the compression ramp appears near the throat at low Mach number. Low-pressure airflow near the bleed window neutralises the original high-pressure airflow behind the shock train, which decreases the overall pressure of the downstream region of the internal contraction section. To match the lower pressure, the structure of the shock train changes from strong $\lambda$ -type to weak $\lambda$ -type, and finally to a normal shock wave as backpressure increases at Mach number 2.5. Herein, the total pressure recovery coefficient of the inlet near the critical condition improves by 8.5% as the backpressure ratio (Pe/P0) adds from 13 to 14.6 at Mach number 2.5. It proves that the scheme is effective on terminal shock wave control and inlet performance improvement. In addition, due to the background wave and the bleed window, two kinds of shock wave oscillation occur when the backpressure ratio is 13.1.


Author(s):  
Quang-Vi Ngo ◽  
Trong-Thang Nguyen

This research proposes the control system structure for a small-scale wind turbine. Significantly, the maximum power point tracking algorithm (MPPT) and the pitch angle controller are deeply analyzed; this is the base for proposing the strategy of the MPPT algorithm combined with pitch-angle control in a wide speed range of wind. This article also researches the converters, then analyses the advantages of each converter to choose the suitable converter for the small-scale wind turbine. In the MPPT algorithm design, the expert experience takes advantage through the fuzzy controller. The pitch angle controller is built based on the PID controller with its parameters adjusted by Fuzzy logic. The results showed that the effectiveness of the proposed control strategy is much better than that of the traditional control strategy. Moreover, in high and low wind speeds, the proposed control system operates reliably and stably.


2021 ◽  
Vol 224 (16) ◽  
Author(s):  
Nathan E. Thompson ◽  
Danielle Rubinstein ◽  
William Parrella-O'Donnell ◽  
Matthew A. Brett ◽  
Brigitte Demes ◽  
...  

ABSTRACT Human bipedalism entails relatively short strides compared with facultatively bipedal primates. Unique non-sagittal-plane motions associated with bipedalism may account for part of this discrepancy. Pelvic rotation anteriorly translates the hip, contributing to bipedal stride length (i.e. the ‘pelvic step’). Facultative bipedalism in non-human primates entails much larger pelvic rotation than in humans, suggesting that a larger pelvic step may contribute to their relatively longer strides. We collected data on the pelvic step in bipedal chimpanzees and over a wide speed range of human walking. At matched dimensionless speeds, humans have 26.7% shorter dimensionless strides, and a pelvic step 5.4 times smaller than bipedal chimpanzees. Differences in pelvic rotation explain 31.8% of the difference in dimensionless stride length between the two species. We suggest that relative stride lengths and the pelvic step have been significantly reduced throughout the course of hominin evolution.


Sign in / Sign up

Export Citation Format

Share Document