inorganic aerosols
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 46)

H-INDEX

27
(FIVE YEARS 7)

Chemosphere ◽  
2021 ◽  
pp. 133393
Author(s):  
Yiang Chen ◽  
Dehao Yuan ◽  
Wanying Chen ◽  
Mingyun Hu ◽  
Jimmy C.H. Fung ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shau-Liang Chen ◽  
Sih-Wei Chang ◽  
Yen-Jen Chen ◽  
Hsuen-Li Chen

AbstractParticulate matter emitted through human activities not only pollutes the air, but also cools the Earth by scattering shortwave solar radiation. However, coarser dust particles have been found to exert a warming effect that could, to some extent compensate for the cooling effect of fine dust. Here we investigate the radiative effects of sulfate containing aerosols of various sizes and core/shell structures using Mie scattering and three-dimensional finite difference time domain simulations of the electromagnetic fields inside and around particulate matter particles. We find that not only coarse dust, but also fine non-light-absorbing inorganic aerosols such as sulfate can have a warming effect. Specifically, although the opacity of fine particles decreases at longer wavelengths, they can strongly absorb and re-emit thermal radiation under resonance conditions at long wavelength. We suggest that these effects need to be taken into account when assessing the contribution of aerosols to climate change.


2021 ◽  
Vol 125 (39) ◽  
pp. 8668-8679
Author(s):  
Shuichi B. Ushijima ◽  
Erik Huynh ◽  
Ryan D. Davis ◽  
Margaret A. Tolbert

2021 ◽  
Vol 21 (11) ◽  
pp. 8761-8773
Author(s):  
Djacinto Monteiro dos Santos ◽  
Luciana Varanda Rizzo ◽  
Samara Carbone ◽  
Patrick Schlag ◽  
Paulo Artaxo

Abstract. In this work, the relationships between size and composition of submicron particles (PM1) were analyzed at an urban site in the Metropolitan Area of São Paulo (MASP), a megacity with about 21 million inhabitants. The measurements were carried out from 20 December 2016 to 15 March 2017. The chemical composition was measured with an Aerodyne Aerosol Chemical Speciation Monitor and size distribution with a TSI Scanning Mobility Particle Sizer 3082. PM1 mass concentrations in the MASP had an average mass concentration of 11.4 µg m−3. Organic aerosol (OA) dominated the PM1 composition (56 %), followed by sulfate (15 %) and equivalent black carbon (eBC, 13 %). Four OA classes were identified using positive matrix factorization: oxygenated organic aerosol (OOA, 40 % of OA), biomass burning organic aerosol (BBOA, 13 %), and two hydrocarbon-like OA components (a typical HOA related to vehicular emissions (16 %) and a second HOA (21 %) representing a mix of anthropogenic sources). Particle number concentrations averaged 12 100±6900 cm−3, dominated by the Aitken mode. The accumulation mode increased under relatively high-PM1 conditions, suggesting an enhancement of secondary organic aerosol (SOA) production. Conversely, the contribution of nucleation-mode particles was less dependent on PM1 levels, consistent with vehicular emissions. The relationship between aerosol size modes and PM1 composition was assessed by multilinear regression (MLR) models. Secondary inorganic aerosols were partitioned between Aitken and accumulation modes, related to condensation particle growth processes. Submicron mass loading in the accumulation mode was mostly associated with highly oxidized OOA and also traffic-related emissions. To the authors' knowledge, this is the first work that uses the MLR methodology to estimate the chemical composition of the different aerosol size modes. The chemical composition with size-dependent PM provides innovative information on the properties of both primary and secondary organic aerosols, as well as inorganic aerosols in a complex urban environment. The results emphasize the relevance of vehicular emissions to the air quality at MASP and highlight the key role of secondary processes on the PM1 ambient concentrations in the region since 56 % of PM1 mass loading was attributed to SOA and secondary inorganic aerosol.


Author(s):  
Shichun Zhang ◽  
Daniel Q. Tong ◽  
Mo Dan ◽  
Xiaobing Pang ◽  
Weiwei Chen ◽  
...  

This study presents field observations and laboratory analyses of wintertime airborne particulate matter (PM2.5) and its chemical components in the Changchun metropolitan area, the geographical center of northeastern China. Twenty-four hour PM2.5 filter samples were collected from 23 December 2011 to 31 January 2012 at four sites in the types of traffic, residential, campus, and a near-city rural village, respectively. Daily PM2.5 concentrations ranged from 49 to 466 µg m−3, with an arithmetic average of 143 µg m−3. Laboratory analyses showed that among all measured chemical species, mineral dust contributed the largest proportion (20.7%) to the total PM2.5 mass, followed by secondary inorganic aerosols (SIA, including SO42−, NO3− and NH4+), which constituted 18.8% of PM2.5 mass. Another notable feature of PM2.5 chemical composition was high halogen (Cl− and F−) loadings at all sites, which was likely due to emissions from coal combustion, plastic manufacturing, and glass melting. Among the four sampling sites, the suburban site exhibited the highest PM2.5 levels and extremely high Cl− and F− loadings due to residential wood burning and nearby industrial facilities lacking effective emission controls. Our results report one of the earliest observations of PM2.5 composition in this region, providing a baseline of aerosol profiles of aerosol before PM2.5 was routinely measured by environmental protection agencies in China, which could be useful for assessing long-term trends of air quality and effectiveness of mitigation measures.


2021 ◽  
Vol 15 ◽  
pp. 1-9
Author(s):  
Soon-Ung Park ◽  
Jeong Hoon Cho

A prolonged heavy haze event that has caused for the Environmental Protection Bureau (EPB) in Beijing to take emergency measures for the protection of the public health and the reduction of air pollution damages in China has been analyzed with the use of the Aerosol modeling System (AMS) to identify causes of this event. It is found that the heavy haze event is associated with high aerosols and water droplets concentrations. These high aerosol concentrations are mainly composed of anthropogenic aerosols, especially secondary inorganic aerosols formed by gas-to-particle conversion of gaseous pollutants in the eastern part of China whereas those in the northeastern parts of China are composed of the mixture of the anthropogenic aerosols and the Asian dust aerosol originated from the dust source regions of northern China and Mongolia. These high aerosol concentrations are found to be subsequently transported to the downwind regions of the Korean Peninsula and Japan causing a prolonged haze event there. It is also found that the Asian dust aerosol originated from northern China and Mongolia and the anthropogenic aerosols produced by chemical reactions of pollutants in the high emissions region of eastern China can cause significantly adverse environmental impacts in the whole Asian region by increased atmospheric aerosol loadings that may cause respiration diseases and visibility reduction and by excess deposition of aerosols causing adverse impacts on terrestrial and marine eco-systems.


2021 ◽  
Vol 21 (5) ◽  
pp. 4025-4037 ◽  
Author(s):  
Mengyuan Zhang ◽  
Arpit Katiyar ◽  
Shengqiang Zhu ◽  
Juanyong Shen ◽  
Men Xia ◽  
...  

Abstract. To mitigate the impacts of the pandemic of coronavirus disease 2019 (COVID-19), the Indian government implemented lockdown measures on 24 March 2020, which prohibited unnecessary anthropogenic activities, thus leading to a significant reduction in emissions. To investigate the impacts of this lockdown measure on air quality in India, we used the Community Multi-Scale Air Quality (CMAQ) model to estimate the changes of key air pollutants. From pre-lockdown to lockdown periods, improved air quality is observed in India, indicated by the lower key pollutant levels such as PM2.5 (−26 %), maximum daily 8 h average ozone (MDA8 O3) (−11 %), NO2 (−50 %), and SO2 (−14 %). In addition, changes in these pollutants show distinct spatial variations with the more important decrease in northern and western India. During the lockdown, our results illustrate that such emission reductions play a positive role in the improvement of air quality. Significant reductions of PM2.5 concentration and its major components are predicted, especially for secondary inorganic aerosols that are up to 92 %, 57 %, and 79 % for nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+), respectively. On average, the MDA8 O3 also decreases 15 % during the lockdown period although it increases slightly in some VOC-limited urban locations, which is mainly due to the more significant reduction of NOx than VOCs. More aggressive and localized emission control strategies should be implemented in India to mitigate air pollution in the future.


Sign in / Sign up

Export Citation Format

Share Document